
ORTHOGONAL SPECTRA

YUQING SHI

This is my talk at European Autumn School in Topology 2019. I mainly used [Sch18]
and [Sch19] for preparing the talk.

1. Motivation for spectra

On the one hand, there are stable phenomena in the category of topological spaces, for
example:

Theorem 1.1 (Freudenthal suspension theorem). Let X be a n-connected pointed topo-
logical spaces, then we have

πn+k(X)
∼=−→ πn+k+1(ΣX)

for n ≥ k.

Thus, we may want “stable objects” to make the suspension functor to a real equivalence
of categories.

On the other hand, let us consider generalised cohomology theories. Denote by H̃(−;A)
the reduced singular cohomology theory with coefficient abelian group A. We know that
for all n ∈ N, we have H̃

n
(X;A) ∼= [X,K(A, n)]pt for all pointed spaces X. Suspension

axiom tells us that for all n, we have

H̃
n
(X;A) ∼= H̃

n+1
(ΣX;A).

Thus we have

[X,K(A, n)]pt
∼= [ΣX,K(A, n+ 1)]pt

Σ−Ω∼= [X,ΩK(A, n+ 1)]pt.

Applying Yoneda lemma, we obtain an homotopy equivalence K(A, n)
'−→ ΩK(A, n+ 1).

Therefore, we can interpret reduced singular cohomology theory as a sequence of pointed
spaces {K(A, n)}n∈N with “structure maps” {K(A, n)

'−→ ΩK(A, n+ 1)}n∈N.

Definition 1.2. A prespectrum E consists of
i) A sequence {En}n≥0 of pointed spaces,
ii) Structure maps σn : ΣEn → En+1 for all n ∈ N.

Remark 1.3. Prespectra turns out to be one of the objects that can both explain the stable
phenomena in spaces, and represent (generalised) cohomology theories:

i) Let X be a topological space. We can define the suspension spectrum Σ∞X with
(Σ∞X)n := ΣnX and the structure maps are the identity maps. The homotopy
group of Σ∞X is the “stabilisation” of the homotopy group of X under the
suspension functor, cf. Definition 4.1.

Notation 1.4. Denote by S the suspension spectrum Σ∞ S0.

ii) The Brown representability theorem shows that generalised cohomology theories
relates closely to prespectra (next talk).
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Problem 1.5. It is hard to define symmetric monoidal structure (smash products) on
the category of prespectra, extending the smash product construction on spaces.

There are several motivations of having a symmetric monoidal structure. For example,
we could then define algebra objects and do algebras in the category of (pre)spectra. Also
note that, for singular homology theory, we have

Hk(X;A) ∼= πn+k(X ∧K(A, n)),

for n large enough. Therefore, if we could define smash product, we may also be able to
define homology theories using spectra.

2. Orthogonal Spectra

In order to be able to define smash product, we need to introduce one of the alternative
models for spectra: orthogonal spetra.

Definition 2.1. An orthogonal spectrum is a prespectrum E = {En}n∈N with the following
data: there is a base point preserving continuous left action of the orthogonal group O(n)
on En for all n ∈ N, such that for all n,m in N, the iterated structure map σm

En ∧ Sm En+m

En+1 ∧ Sm−1 · · · En+m−1 ∧ S1

σm

is O(n)×O(m) equivariant.

Definition 2.2. A morphism f : E → E ′ of orthogonal spectra consists of a collection

{fn : En
O(n)−−→ E ′n ∈ Top∗ | fn is O(n) equivariant }n∈N

of maps of pointed spaces such that the following diagram commutes for all n ∈ N

En ∧ S1 En+1

E ′n ∧ S1 E ′n+1

σE
n

fn∧id fn+1

σE′
n

.

Notation 2.3. Denote the category of orthogonal spectra by SpO.

Example 2.4 (Suspension spectra). Let X be a topological space. We have seen the
definition of Σ∞X as a prespectrum. In order to make Σ∞X to a orthogonal spectrum,
we set (Σ∞X)n := X ∧ Sn. This way, (Σ∞X)n has an left O(n) action via the canonical
action on Sn ≈ R+, where (−)+ denotes the one point compactification.

Example 2.5 (Eilenberg–Maclane Spectra). We can define the Eilenberg–Maclane spectra
HA for an abelian group A as a prespectrum via setting (HA)n := K(A, n). However, how
can we give K(A, n) an O(n)-action?

Definition 2.6. Define the space A[Sn] of A-linearisation of (Sn, s0) as

A[Sn]
Set
:=

{
∑m

i=1 aivi | ai ∈ A, vi ∈ Sn,m <∞}
(a1v + a2v = (a1 + a2)v, and as0 = 0,∀a ∈ A)
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with the quotient topology induced from
∐

m≥0A
m × (Sn)m via the surjection∐

m≥0

Am × (Sn)m � A[Sn], (a1, . . . , am, v1, . . . , vm) 7→
m∑
i=1

aivi.

Proposition 2.7. We have A[Sn] ' K(A, n).

Now we can define the Eilenber–Maclane spectra HA as an orthogonal spectrum by
setting (HA)n := A[Sn] with structure map

σn : A[Sn] ∧ S1 → A[Sn+1],

(
m∑
i=1

aivi ∧ w

)
7→

m∑
i=1

ai(vi ∧ w).

The action of O(n) on (HA)n is given again by the canonical action of Sn.

Example 2.8 (Unoriented bordism MO). The unoriented bordism spectrum MO corre-
sponds1 to the unoriented bordism homology theory with

MOm(X) ∼= {f : M → X |M is a m-dimensional manifold}/ bordisms,

the n-dimensional unoriented bordism group of X. By manifolds we meant smooth and
closed manifolds.

As a orthogonal spectrum, MO is define via

MOn := EO(n)+ ∧O(n) Sn,

the Thom space of the tautological vector bundle γnR : EO(n)×O(n) Rn → BO(n). Recall
that O(n) acts one the left and on the right of EO(n) and Sn. Thus the left action of O(n)
on (MO)n is given by the remaining left action of O(n) on EO(n).

Now let us consider the structure map: we have the following pullback of vector bundles

EO(n)+ ×O(n) Rn × R EO(n+ 1)+ ×O(n+1) Rn+1

BO(n) BO(n+ 1)

i∗

γn+1
R

i

,

where the map i is induced by canonical inclusion of n-dimensional vector subspaces to
n+ 1-dimensional vector subspace. Then we define the induced map

σn := Th(i∗) : EO(n)+ ∧O(n) Sn ∧ S1 → EO(n+ 1)+ ∧O(n+1) Sn+1

on the Thom spaces to be the structure map for all n ∈ N.

Example 2.9 (Complex cobordism MU). The complex cobordism spectrum MO corre-
sponds to the complex bordism homology theory with

MUm(X) ∼= {f : M → X |M is a m-dimensional stably complex manifold}/ bordisms.

Recall that a manifold is stably complex if the direct sum of its tangent bundle and some
trivial vector bundles is isomorphic to a complex vector bundle.

Analogue to MO, our first attempt is to define the sequence of pointed spaces

MUn := EU(n)+ ∧U(n) SCn

,

which is the Thom space of the tautological bundle γnC : EU(n)×U(n) Cn → BU(n). Here
SCn

:= (Cn)+ ≈ S2n.

1using the Brown representability theorem
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Let us consider the O(n)-action now: Write Cn ∼= Rn ⊕ iRn. Then the O(n) action on
Cn is given by the canonical action on Rn componentwise. Furthermore, this is a unitary
action. In this way, we can consider O(n) as a subgroup of U(n), and thus O(n) acts on
the left and right on EU(n) by restriction. Therefore, O(n) acts on the left on MUn via
the remaining left action on EU(n).

How about the structure map? We have a canonical inclusion j : BU(n)→ BU(n+ 1),
analog to MO. Therefore we can obtain an induced map

Th(j∗) : MUn ∧ S2 = EU(n)+ ∧U(n) ∧SCn ∧ SC → EU(n+ 1)+ ∧U(n+1) SCn+1

= MUn+1.

on the Thom spaces. In other words, we don’t have a canonical map MUn ∧ S1 → MUn+1.
To fix this problem, we define the sequences of pointed spaces

MUn := Map
(
SiR,MUn

)
, for n ∈ N

The left O(n) action is give by conjugation, i.e. Mf(v) = M(f(M−1v)) for all M ∈ O(n)
and all v ∈ SiR. The structure map is

σn : MUn ∧ SR = Map
(
SiR,MUn

)
∧ SR

ev−→ Map
(
SiR

n

,MUn ∧ SR)
(∗)−→ Map

(
SiR

n

,Map
(
SiR

n

,MUn+1

))
∼= Map

(
SiR

n

,MUn+1

)
= MUn+1,

where the map (∗) is induced by the adjunction of the map (replacing C by Rn ⊕ iRn)

Th(j∗) : MUn ∧ SR ∧ SiR
n → MUn+1.

We can check that the MU := (MUn, σn)n∈N with the described O(n) action is an
orthogonal spectrum.

3. Symmetric monoidal structure

In section, we are going to define the smash product of two orthogonal spectra. Intuitively,
you shall think of smash product of spectra as analogue to vector spaces with tensor
product. Thus we are going to first define bimorphisms in SpO, which is analogue to a
bilinear map of vector spaces.

Definition 3.1. A bimorphism b : (E,E ′)→ E′′ with orthogonal spectra E,E ′ and E ′′ is
a collection

{bp,q : Ep ∧ E ′q → E ′′p+q ∈ Top∗ | bp,q is O(p)×O(q) equivariant }p,q∈N
of maps such that the following diagram commutes

Ep ∧ E ′q ∧ S1 Ep ∧ S1 ∧ E ′q

Ep ∧ E ′q+1 E ′′p+q ∧ S1 Ep+1 ∧ E ′q

E ′′p+q+1 Ep+1+q

twist

id×χ1,q

O(n)-action

,

where χ1,q : R1+q → Rq+1, (v1, v2, . . . , vq+1) 7→ (v2, . . . , vq+1, v1).
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Definition 3.2. A smash product for E,E ′ ∈ SpO is a pair (E ∧E ′, i) with E ∧E ′ ∈ SpO

and a bimorphism i : (E,E ′)→ E ∧ E ′ such that the map induced by i:

SpO (E ∧ E ′, E ′′) i∗−→ Bimor ((E,E ′), E ′′)

is an bijection for any E ′′ ∈ SpO.

Proposition 3.3. For any two E,E ′ ∈ SpO, the smash product E ∧ E ′ exists.

Proposition 3.4. The smash product is symmetric monoidal, i.e. it satisfies
i) (associativity) (E ∧ E ′) ∧ E ′′

∼=−→ E ∧ (E ′ ∧ E ′′),
ii) (commutativity) E ∧ E ′

∼=−→ E ′ ∧ E,
iii) (unitarity) S ∧ E ∼= E ∼= E ∧ S,

for any E,E ′, E ′′ ∈ SpO.

Proposition 3.5. The category
(
SpO,∧,S

)
is a closed2 symmetric monoidal category.

Definition 3.6. A ring spectrum is a monoid in
(
SpO,∧,S

)
.

Remark 3.7. More concretely, a ring spectrum R ∈ SpO is an orthogonal spectrum R
together with a morphism R ∧R→ R of orthogonal spectra satisfying certain conditions
(associativity etc.) By Definition 3.2, we can equivalently consider the map R ∧R→ R as
a bimorphism (R,R)→ R.

We are going to see that the orthogonal spectra introduced in Example 2.4, 2.5, 2.8, and
2.9 are all3 ring spectra. To show this, we are only going to write down the bimorphisms
and leave the reader to check the rest.

Example 3.8 (Eilenberg–Maclane spectra). Let A be a ring. Then the Eilenberg–Maclane
spectrum HA is a ring spectrum, because, for each m,n ∈ NN , we can define the
bimorphism

HAm ∧ HAn → H(A⊗ A)m+n → HAm+n, ∀ m,n ∈ N(∑
i

aivi

)
∧

(∑
j

bjwj

)
7→

(∑
i, j

ai ⊗ bjvi ∧ wj

)
7→
∑
i, j

aibjvi ∧ wj.

If A is commutative, then HA is a commutative ring spectrum, i.e. a commutative
monoid in

(
SpO,∧,S

)
.

Example 3.9 (MO). To define the monoid structure on MO, note that there is a map on
the tautological bundle

γmR × γnR → γm+n
R , ∀ m,n ∈ N

induced by sending a m-dimensional vector subspace and a n-dimensional vector subspace
to the direct sum of these two. The induced map on the Thom spaces gives us a bimorphism

MOm ∧MOn → MOm+n, ∀ m,n ∈ N.

Example 3.10 (MU). Similar as MO, we can obtain maps (of pointed spaces)

MUm ∧MUn → MUm+n, ∀ m,n ∈ N

2There exists “mapping spectra” Map(−,−) with the property that Map (E ∧ E′, E′′) ∼=
Map (E,Map (E′, E′′)).

3For the suspension spectra, we need to require that A is a ring.
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the induced map on the Thom space of the “direct sum map” of the tautological bundles.
Thus, we obtain bimorphism

MUm ∧MUn = Ωm MUm ∧ Ωn MUn

∧−→ Ωm+n MUm ∧MUn

→ Ωm+n MUm+n

= MUm+n, ∀ m,n ∈ N.

4. Stable equivalence

Definition 4.1. The k-th homotopy group of E ∈ SpO is πk(E) := colimn→∞ πk+nEn.

Definition 4.2. The homotopy category HoSpO (' SHC4) is defined via formally
inverting the π∗-isomorphisms in SpO. In other words, every functor F : SpO → C factors
through HoSpO uniquely if and only if F sends π∗-isomorphisms to isomorphisms in C.

Remark 4.3. There are a lot of models for a category of spectra, whose underlying homotopy
category are all equivalent. In different models we have different conveniences. In the
category of prespectra, it is (most of the time) easy to define a spectra, while in the
category of orthogonal spectra, or the category of symmetric spectra, cf. [Sch07], we can
define symmetric monoidal structures. A good reference for introduction on the stable
homotopy category and comparison between different approaches is [Mal14].
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