
COMPLEX ORIENTED COHOMOLOGY THEORY AND MU

YUQING SHI

These are the notes for my talk at the Bayerische Klein Arbeitsgemeinschaft titled
“Towards Chromatic Homotopy Theory” on 03 March 2019 in Bayreuth.

In this talk we will see some geometric and topological aspects of the formal group laws
and the Lazard ring L. It can be summarised into the following theorem of Quillen.

Theorem (Quillen). There is an isomorphism L→MU∗ of graded rings.

Here MU∗ is the coefficient ring of complex cobordism. The plan of this talk is to
motivate and introduce the relevant notions in topology and sketch the rational version
of Quillen’s theorem. References for this talk are [Ada74], [Lur10] and [Mal14].

1. Complex oriented cohomology theory (COCT)

Let us recall the definitions of the additive and the multiplicative formal group laws.
They can be seen as the formulas of the first Chern class of the tensor product of two
complex line bundles, where the Chern class takes values in ordinary cohomology and
complex K-theory respectively. More precisely, let us consider the multiplication µ on
CP∞,

µ : CP∞ × CP∞ → CP∞,

which classifies the tensor product of two complex line bundles. This map induces a map
on ordinary cohomology

µ∗ : Z[[t]] ∼= H∗(CP∞)→ H∗ (CP∞ × CP∞) ∼= Z[[x, y]]

where [[•]] denotes the formal power series. The additive formal group law is the image
of t under the map µ∗. If we replace the ordinary cohomology by complex K-theory in
the map µ∗, we obtain the multiplicative formal group law.

Question 1.1. Can we use this procedure to obtain other formal group laws from any
other generalised cohomology theory? Or in other words, in which generalised cohomology
theory can we define Chern classes and how the corresponding formula of the Chern class
of tensor products of two complex line bundles looks?

We will see that the “complex oriented cohomology theories” are the ones that we are
looking for.

Definition 1.2. A multiplicative cohomology theory E is complex orientable if the map
i∗ : Ẽ2(CP∞) → Ẽ2(S2) induced by the canonical inclusion i : S2 ≈ CP1 → CP∞ is
surjective.

Remark 1.3. By the suspension axiom we have that Ẽ2(S2) ∼= Ẽ0(S0) ∼= E0(pt). In E0(pt)
we have the unit element 1 of the multiplication of E. Furthermore, the map i∗ is a map
of E0(pt)-modules. Thus E is complex orientable if and only if there exists a cohomology
class t ∈ Ẽ2(CP∞) such that i∗(t) = 1.

Definition 1.4. A choice of such a cohomology class t is called a complex orientation of
E. We say the pair (E, t) is a complex oriented cohomology theory.
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Example 1.5.
i) Singular cohomology with the universal first Chern class is complex oriented. The

multiplicative structure is given by the cup product.
ii) There exists a “universal” complex oriented cohomology theory (MU, tMU). Given

any complex oriented cohomology theory (E, t), there exists a unique (“up to
homotopy”) “ring” map (MU, tMU)→ (E, t).

Given a complex oriented cohomology theory, we can do some nice computations.
Proposition 1.6. Let (E, t) be a complex oriented cohomology theory. Denote E∗ :=
E∗(pt). We have:

i) a graded ring isomorphism E∗(CP∞) ∼= E∗[[t]], and
ii) a graded ring isomorphism E∗(CP∞ × CP∞) ∼= E∗[[x, y]], where x = pr∗1(t) and

y = pr∗2(t), and pr1 and pr2 are the canonical projections from CP∞ × CP∞ to
CP∞.

Remark 1.7. The above isomorphisms depend on E and the choice of orientation t.
Thus the multiplication µ on CP∞ induces a map

µ∗ : E∗[[t]] ∼= E∗(CP∞)→ E∗(CP∞ × CP∞) ∼= E∗[[x, y]].

Remark 1.8. Denote by fE,t(x, y) the image of t under µ∗.
i) The formal power series fE,t(x, y) is a formal group law over the ring E∗, because

the multiplication µ is unital, associative and commutative.
ii) The Landweber exact functor theorem tells us when a formal group law comes

from a complex oriented cohomology theory in this way.

2. Universal complex oriented cohomology theory (MU, tMU)

First, let us introduce an alternative way to think about cohomology theories.
Theorem 2.1 (Brown representability). Let h be a generalised cohomology theory. Then
for every n ∈ Z, there exists a pointed space En such that h̃n(X) ∼= [X,En]pt. Here [•]
denotes the homotopy classes of maps.

By suspension axiom we have h̃n(X) ∼= h̃n+1(ΣX), where Σ denotes the reduced sus-
pension. Interpreting this isomorphism by Brown representability, we obtain

[X,En]pt
∼= [ΣX,En+1]pt

∼= [X,ΩEn+1]pt,

where the second isomorphism is given by the Σ−Ω adjunction. Thus we obtain a
homotopy equivalence En

'−→ ΩEn+1, which corresponds again by adjunction to a map
ΣEn → En+1 (this map does not have to be a homotopy equivalence).
Remark 2.2. Thus we can think of a generalised cohomology theory as a sequence of
pointed spaces together with some maps. This is essentially the definition of a prespec-
trum.
Definition 2.3. A prespectrum E = {En}n∈Z is a sequence of pointed spaces together
with structure maps ΣEn → En+1. A morphism f between two prespectra E and E ′

consists of maps fn : En → E ′n such that they are compatible with the structure maps.
More concretely, the following diagram of pointed spaces commutes.

ΣEn ΣE ′n

En+1 E ′n+1.

Σ fn

fn+1

This gives us the category of prespectra, denoted by PrSp.
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Remark 2.4. We don’t require that the adjoint of the structure map to be a homotopy
equivalence. If it is, we call the object an Ω-prespectrum.

Definition 2.5. Let E be a prespectrum.
i) Define the homotopy group πnE := colimi∈Z πk+iEn, for each n ∈ Z.
ii) Define the homotopy category HoSp of spectra as the category PrSp “localised

at π∗-isomorphisms”, where π∗-isomorphisms are morphisms that induce isomor-
phisms between all homotopy groups.

Remark 2.6. Our definition of HoSp is not precise enough. However, this is how you
should think about it: the objects are prespectra and the morphisms are “homotopy
classes of morphisms between prespectra”, denoted by [•, •]. It actually takes some work
to define this category rigorously, see [Mal14] for a detailed explanation.

Remark 2.7. From now on we will work in the HoSp and most of the time we will
only consider its abstract definitions and properties instead of analysing the objects and
morphisms concretely.

Proposition 2.8.
i) There is a suspension spectrum functor Σ∞ : HoTop∗ → HoSp, X 7→ Σ∞X,

defined by (Σ∞X)n := ΣnX. Define the sphere spectrum S as Σ∞ S0.
ii) There is a shift functor Σ: HoSp → HoSp, defined by (ΣE)n := En+1. This is

an equivalence of categories.
iii) There is a smash product ∧ on HoSp such that (HoSp,∧,S) is a symmetric

monoidal category.

Definition 2.9. A ring spectrum is a monoid in (HoSp,∧,S).

Example 2.10. Let γn : EU(n)→ BU(n) be the universal principal U(n)-bundle, denote
by Th(γn) the Thom space of the associated universal complex vector bundle of rank n.
For n ≥ 0, define the spectrum

MU(n) := Σ∞−2n Th(γ) := Σ−2n Σ∞Th(γn).

For every n ≥ 1, we have a map ιn : MU(n − 1) → MU(n) that is induced by the map
BU(n−1)→ BU(n) which classifies the Whitney sum with a trivial complex line bundle.
Take the homotopy colimit over these maps:

MU(0)→MU(1)→ · · ·MU(n)→ · · · ,
from which we obtain the spectrum

MU := hocolimn≥0MU(n).

Furthermore, MU is a ring spectrum. Indeed, for a ≥ 0 and b ≥ 0, the map BU(a) ×
BU(b)→ BU(a+ b), which classifies the Whitney sum of two complex vector bundles of
rank a and b, induces a map

MU(a) ∧MU(b)→MU(a+ b).

Upon taking the colimit, we obtain the multiplication MU ∧MU →MU .

Definition 2.11. Given a spectrum E and a space X, we define define:
i) the reduced E-cohomology Ẽn(X) := [Σ∞X,ΣnE] of X and the unreduced E-

cohomology En(X) := Ẽn(X+) of X, where X+ denotes the space of disjoint
union of X and a point.

ii) the reduced E-homology Ẽn(X) := [Σn S,Σ∞X ∧ E] of X and the unreduced E-
homology En(X) := Ẽn(X+) of X.
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Remark 2.12. In the above definition, we can replace the space X with a spectrum F ,
in which case we would obtain the definition of the E-cohomology (homology) of the
spectrum F .

Remark 2.13.
i) We have πn(E) ∼= [Σn S, E] ∼= En(pt) ∼= E−n(pt), and
ii) πn(F ∧ E) ∼= En(F ). �

We can rephrase Theorem 2.1.

Theorem 2.14 (Brown). Every generalised cohomology theory arises from a spectrum
cohomology.

Remark 2.15. Ring spectra define multiplicative cohomology theories, under Definition 2.11.

Remark 2.16. Denote by CohThy denotes the category of cohomology theories. Defini-
tion 2.11 gives us a functor from HoSp to CohThy. This functor is essentially surjective
and full, however it is not faithful, cf. [Lur10, Lecture 17].

With this in mind, we will in our notation not distinguish a spectrum and the coho-
mology theory it represents.

Now, we establish the fact that MU together with a canonical choice of complex ori-
entation is the universal complex oriented cohomology theory.,

Proposition 2.17. The canonical inclusion Σ∞−2 CP∞ = MU(1) → MU determines
a cohomology class in tMU ∈ M̃U

2
(CP∞). The element tMU is a canonical complex

orientation of MU .

Sketch. The surjectivity is given by the inclusion S = MU(0)→MU(1)→MU . �

Let (E, t) be a complex oriented cohomology theory. Given a complex vector bundle
ξ : X → B of rank n, we can define a canonical Thom class uξ ∈ Ẽ2n(Th(ξ)), cf. [Lur10,
Lecture 5]. Thus for every n ≥ 0, we obtain that the Thom class uγn of the universal
complex vector bundel γn : EU(n)→ BU(n) of rank n. By definition we have

uγn ∈ Ẽ2n(Th(γn)) = [Σ∞(Th(γn)),Σ2nE]

∼= [Σ∞−2n Th(γn), E]

= [MU(n), E].

Thus uγn corresponds to (the homotopy class of) a map φn : MU(n)→ E, for every n ≥ 0.
Furthermore, the maps {φn}n≥0 glue nicely together: φn−1 = φn◦ιn. Therefore, we obtain
a map

φ : MU → E.

Proposition 2.18. The map φ is a map of ring spectra and φ(tMU) = t.

Theorem 2.19. There is a bijection{ring maps
MU → E

}
←→

{complex orientation
of the spectrum E

}
φ 7−→ φ(tMU).

Proof. See [Lur10, Lecture 6, Theorem 8]. �

Remark 2.20. Every complex orientation t of E determines a formal group law fE,t. By
the above theorem, in order to understand fE,t, it is sufficient to know the corresponding
ring spectrum morphismMU → E and the formal group laws fMU,tMU

that is determined
by the complex orientation tMU .
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3. Rational version of Quillen’s Theorem

The formal group law fMU that is determined by tMU corresponds to a map ψ : L →
π∗MU (Recall that fMU is a formal group law over MU∗ ∼= π∗MU). This map is actu-
ally an isomorphism of graded rings. The difficulty in proving this isomorphism is that
homotopy groups are in general difficult to compute. Like we always do in topology, we
will first compute the ordinary homology group H∗(MU ;Z), i.e. HZ∗(MU), where HZ is
the spectrum that defines the singular homology/cohomology theory.

Proposition 3.1. Let (E, t) be a complex oriented cohomology theory. There is a canon-
ical (with respect to choice of t) isomorphism

E∗(MU) ∼= π∗E[b1, b2, . . . , bn]

with deg(bi) = 2i. Especially,

H∗(MU ;Z) ∼= Z[b1, b2, . . . , ].

Proof. See [Lur10, Lecture 7, Proposition 2]. �

The rest of the talk is to give a sketch of the following proposition.

Proposition 3.2. The map

θ : L
ψ−→ π∗MU → H∗(MU ;Z)

is a rational isomorphism, where the second map is the Hurewicz map induced by MU ∼=
MU ∧ S id∧η−−→MU ∧HZ.
Corollary 3.3. The map L→ π∗MU is a rational isomorphism.

Sketch. The Hurewicz map is always a rational isomorphism for spectra. �

The way we prove Proposition 3.2 is to study the formal group law that it classifies.
To do this, let us consider the the spectrum MU ∧HZ. This spectrum has two complex
orientations that come from the canonical orientations of MU and HZ respectively:

MU(1)
tMU−−→MU ∼= MU ∧ S id∧η−−→MU ∧HZ(∗)

MU(1)
tZ−→ HZ ∼= S ∧HZ η∧id−−→MU ∧HZ.

This first composition maps the canonical complex orientations tMU of MU to a complex
orientation tMU ∧ 1, denoted again by tMU . This second composition maps the canonical
complex orientations tZ of HZ to a complex orientation 1 ∧ tZ, denoted again by tZ.

Thus this two complex orientations gives isomorphic cohomology ring of CP∞. We have
Z[b1, b2, ...][[tZ]] ∼= π∗(MU ∧HZ)(CP∞) ∼= Z[b1, b2, ...][[tMU ]],

because π∗(MU ∧HZ) ∼= H∗(MU ;Z).

Proposition 3.4. Let g(x) = x + b1x
2 + b2x

3 + · · · be a formal power series over
Z[b1, b2, . . . ]. We have tMU = g(tZ).

Proof. See [Lur10, Lecture 7, Claim 2]. �

Also, we have two formal group laws fMU∧HZ,tMU
and fMU∧HZ,tZ over Z[b1, b2, . . . ] de-

termined by the complex orientations. More concretely,
µ∗(tZ) = fMU∧HZ,tZ(pr∗1 tZ, pr∗2 tZ) = pr∗1 tZ + pr∗2 tZ

µ∗(tMU) = fMU∧HZ,tMU
(pr∗1 tMU , pr∗2 tMU),

where µ is the multiplication of CP∞.
Comparing the Hurewicz homomorphism with the composition (∗), we see that the

map θ classifies the formal group law fMU∧HZ,tMU
.
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Corollary 3.5. We have fMU∧HZ,tMU
(x, y) = g(g−1(x) + g−1(y)).

Proof. We have
fMU∧HZ,tMU

(pr∗1 tMU , pr∗2 tMU) = µ∗(tMU)

= µ∗(g(tZ))

= g(µ∗(tZ))

= g(fMU∧HZ,tZ(pr∗1 tZ, pr∗2 tZ))

= g(pr∗1 tZ + pr∗2 tZ)

= g
(
pr∗1
(
g−1(tMU)

)
+ pr∗2

(
g−1(tMU)

))
= g

(
g−1 (pr∗1 (tMU)) + g−1 (pr∗2 (tMU))

)
�

Thus θ classifies the formal group law g (g−1(x) + g−1(y)). By [Lur10, Lecture 2, Lemma
10], we know that θ is an rational isomorphism.

Remark 3.6. We can generalise the above argument/construction. In other words, we can
replace HZ by any other complex oriented cohomology theory (E, tE), then we would
obtain the isomorphism

fMU∧E,tMU
(x, y) = g ◦ fMU∧E,tE(g−1(x) + g−1(y)).
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