VASSILIEV INVARIANTS VIA MANIFOLD CALCULUS

YUQING SHI

CONTENTS
Introduction 1
1. Long knots 4
2. Vassiliev invariants 8
3. Manifold calculus on knots 22
4. Homotopy spectral sequence for space of long knots 29
5. Conclusion and further works 53
References 54

INTRODUCTION

One of the main questions in knot theory is to find computable knot invariants which
can classify knots up to isotopy. Motivated by this, varies knot invariants have been
constructed and studied. For example, the Alexander polynomial [Ale27] classifies many
knots, but it can not distinguish mirror images of knots. The Jones polynomial [Jon85|
can distinguish mirror images of knots, but it does not distinguish all knots, cf. [Kan86|.
Khovanov Homology [KhoO0|, a categorification of the Jones polynomial, detects the
unknot cf. [KM11], but there are still infinitely many families of knots that have identical
Khovanov homology, cf. [Wat07|. These invariants already provide us with new knowledge
about knots, but it seems that each of them individually can not give a satisfactory answer
to the classification problem.

In this thesis we will first introduce finite type invariants (Section 2), which are a
collection of knot invariants discovered by Vassiliev [Vas90; Bar95|. Instead of focusing on
a single knot invariant, Vassiliev’s idea was to study the structure of all knot invariants
with values in an abelian group A4, i.e. H'(Emb(S?, S3); A), where Emb(S?, %) is the space
of knots with Whitney C'*°-topology. The collection of Vassiliev invariants is conjectured
to distinguish knots.

Our approach to study Vassiliev invariants, inspired by [BCKS17] and [GKWO01], is to
use manifold calculus (Section 3). For this, we consider the space K = Emby (I, R? x D! ¢)
of long knots (Section 1) with boundary condition ¢. See Figure 1 for an example of a
long knots. The space of long knots has the property that Emb(S*,S?) ~ IC x50(2) SO(3),
cf. [Bud08, Theorem 2.1]. As a consequence we have H’(Emb(S', $%); A) = H°(K; A).

More precisely, we consider the embedding functor Emb(—) associated to the space K
(Section 3.2), that is

Emb(—): Openy (I) — Top
V = Emby(V,R? x D', ¢).
which maps open subset 91 C V of I to the space Emby(V,R? x D!, ¢) of embeddings.
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FIGURE 1. A visualisation of a trefoil long knot

Manifold calculus associates to Emb(—) a sequence of polynomial functors T,, Emb(—)
“approximating” the functor Emb(—),

B R T,, Emb(— n—1 Emb(—

TO Emb

Tn : 71

The natural transformation 7, evaluated at the unit interval I induces a knot inva-
riant 7, (I).: mo () — mo(T,, Emb(I)). Our first result is to give a geometric proof of the
following theorem, stated in [BCKS17]|, which implies that 7, (I). is an additive Vassiliev
invariant of degree at most n.

Theorem 1 (Theorem 3.2.6). Let K; and Ky be knots such that' K] and [Ks] have
the same values for any Vassiliev invariants of degree at most n — 1. Then we have

M (D ([K1]) = 7 (D) ([K2]).

The two main ingredients of the proof are clasper surgery? and grope cobordism of
knots. Clasper surgery of a long knot K in a manifold M is a special case of Dehn surgery
in M performed along certain framed links, which does not change the diffeomorphism
type of M, but can change the isotopy class of K. If two long knots can be transformed
into each other by clasper surgeries of degree k, then they have the same values for any
Vassiliev invariant of degree at most k — 1, c¢f. Theorem 2.2.20. A grope is an embedded
(CW)-complex in a 3-manifold, whose boundary are knots. Two knots have the same
values for any Vassiliev invariant of degree at most £ — 1 if and only if they cobound a
grope of degree k. Actually, claspers and gropes are two equivalent characterisation of the
universal additive Vassiliev invariants. The relation between claspers, gropes and Vassiliev
invariants is explained in detail in [CT04a] and [CT04b]. In order to prove the above
theorem, we prove the following technical lemma about gropes, stated less precisely?®.

Lemma 2 (Lemma 2.3.19). Let (GS,{C;}!,) be a capped grope of degree n > 2. Then
there exists a continuous map

hy: D? x A™1 — R3,
which is a A" -family of embeddings of disks, with fived boundary, in a neighbourhood
of G,

IThe square bracket indicates the isotopy equivalence class of knots.
2The original proof in [BCKS17] also used this characterisation
3We will explain precisely the properties that h,, has to satisfy in Section 2.3.
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Note the sequence of polynomial functors T,, Emb(—), evaluated at I, gives us a tower
of fibrations
2O B 29 7, Bmb(n) 2 2O 1 Bmb(1). (0.0.1)
Goodwillie constructed a cosimplicial space associated to this tower of fibrations, which
we explain in detail in Construction 4.1.20. With help of this cosimplicial space, we are
able to make some computation with the Bousfield-Kan homotopy spectral sequence
{E] ,}p.q>0 with integral coefficients associated to this tower of fibrations (Section 4.2.3).
Inspired by work of Conant [Con08|, we are able to give a combinatorial interpretation for

the groups E;—l,p and E;’p, and the differential d': E;—Lp — E;p.

Proposition 3 (Proposition 4.2.31). Denote by T,_; the abelian group generated by labelled
unitrivalent trees (Definition 2.2.11) of degree p — 1 with a total ordering on its leaves,
modulo AS- and IHX-relations (Definition 4.2.28). Then E, , = T,_.

In Figure 2 we draw an example of a labelled unitrivalent tree of degree 4.

/
1 2 3 4 5

FIGURE 2. A labelled unitrivalent tree of degree 4.

Proposition 4 (Proposition 4.2.39). Denote by D,_; the abelian group generated by
(1, p — 1)-marked unitrivalent graphs (Definition 4.2.3/) modulo AS- and I H X*®-relations.
Then we have E)_, /torsion = D,_;.

In Figure 3 we draw an example of a labelled unitrivalent tree of degree 4.

1 2 34 5 67 8

FIGURE 3. A (3,8)-marked unitrivalent graph. The blacks dots indicate
the marked nodes.

It is enough to consider d' modulo torsion, because E; , 1s torsion free.

Proposition 5 (Proposition 4.2.44). A tree 7 € T,_1, T is STU*-equivalent to 0 (Defini-
tion jg;]} if and only if T € im(d") under the isomorphism E, , = T,y from Proposi-
tion 4.2.31.

We use an example in Figure 4 to show the combinatorial interpretation the differential d'.

Observe that in Figure 4 that we can interpret 17 — I as performing an STU-relation
in I' 5 at the trivalent node connected by an edge to the leaf 5, and I3 — I'y as performing
an STU-relation in I 5 at the trivalent node connected by an edge to the leaf 1. The
name STU? is inspired by this observation that we perform a pair of STU-relation in a
(i,p — 1)-marked labelled unitrivalent graph.

As a corollary we obtain a combinatorial interpretation of Eip for p > 1.
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FIGURE 4. An example of d' applied to a (1,5)-marked unitrivalent graphs.

Corollary 6 (Corollary 4.2.46).
i) Forp >4, Egp s isomorphic to the abelian group generated by unitrivalent tree of
degree p — 1, modulo AS-, IHX-, and STU?-relations.
ii) Forp=3, Eg > F3a = 7} Z, because d': E} 4 — Ey 4 is trivial.
iii) Forp=0,1,2, we have Ezip =0.

In [Con08], Conant computed similar results of the above corollary for the rational
homotopy spectral sequence, with help of Sinha’s cosimplicial model for the tower of
fibration 0.0.1.

We conclude in Section 5 by highlighting some related work and problems, e.g. whether
we can give a new (geometric) interpretation to the sequence of polynomial functors
T,, Emb(—) using higher genus grope cobordism of knots.
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Notation. Throughout the text, we will use the following notation and the embeddings
given here to parametrise D™, S" and A".
i) Let I:= [0, 1] denote the unit interval.
ii) Let D" == {p € R" | ||p|| < 1} denote the unit n-ball in R".
iii) Let S" := {p € R""! | ||p|]| = 1} denote the unit n-sphere in R"**
iv) Let A™ == {(to,t1,...,t,) € R™™ |0 < ¢ < 1,57  t; = 1} denote the standard
n-simplex. For ) £ S C {0,1,...,n}, denote by Ag := {t € A" | t; =0, for s ¢ S}
the face of A", labelled by S.

1. LONG KNOTS

Classically, knot theory studies smooth embeddings from S* to S® up to isotopy. For
technical reasons, we shall consider long knots instead of knots in this thesis. A long
knot is an embedding from I to R? x D! coinciding with a fixed linear embedding near
the boundary. The one point compactification of each long knot induces an isomorphism
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between 7(K) and mo(Emb(S?, S?)). Thus for the study of knot invariants with values
in an abelian group A4, i.e. elements of H’(Emb(S!, S?); A), it does no harm to use long
knots instead of knots. However, note that Emb(S', S?) and the space of long knots K
have different higher homotopy groups, cf. Remark 1.0.8.

Definition 1.0.1. Let M and N be smooth manifolds.
i) We define Emb(M, N) to be the space of smooth embeddings of M into N.

ii) When M and N are smooth manifolds with boundary, we define Emby (M, N) to
be the space of smooth embeddings F': M — N which preserve the boundary, i.e.
F(ON) C oM.

iii) We define Emby(M, N, f) to be the space of smooth embeddings that coincide
with a given smooth embedding f: M < N near the boundary that are transverse
to ON, i.e.

Embg(M, N, f) = {F € Embyg(M,N) | F th ON, F and f are germ equivalent at OM }.

We topologise Emb(M, N) and Embs(M, N, f) with the Whitney C*°-topology. For a
detailed introduction of Whitney C'*°-topology, see [GGT3|.

Definition 1.0.2. Fix the embedding c¢: T — R? x D!, ¢ + (0,0, —1 + 2¢t) and define the
space of long knots K as Emby (I, R? x D!, ¢). Elements of K are called long knots.

For the joy of the reader, see Figure 5 for an example of long knots.
CI\

FIGURE 5. An example of a long knot.

Definition 1.0.3. Two long knots Ky, K; € K are called usotopic if there is a smooth
map F: I x I — R? x D! such that Fliypoy = fo and Flp, ¢y = fi, and FJ;, 4y € K for
every t € I. We call F' an isotopy between Ky and K, write Ky ~ K,

Remark 1.0.4. By [Hir76, Theorem 2.3.3] and |Fox45, Theorems 1-4], an isotopy F' between
Ky, K; € K is the same as a path from K, to K; in K.

Definition 1.0.5. Denote by Diffs(R? x D!) the space (with the Whitney C'*-topology)
of self-diffeomorphisms of R? x D! which restrict to the identity map on the boundary. Two
long knots Ky, K € K are called ambient isotopic if there is a path F': T — Diffy(R? x D)
such that F(0) = idgzxpr and F(1) o Ky = K.

Remark 1.0.6. Isotopy and ambient isotopy are equivalence relations on K. The isotopy
extension theorem (cf. [Hir76, Theorem 8.1.3|) implies that K, and K are isotopic if and
only if they are ambient isotopic.

Remark 1.0.7. The smoothness of the embedding in the definition of a long knot guarantees
the tameness of the long knot, i.e. the image of the embedding of I in R? x D! admits a
tubular neighbourhood N(7). In this way, we exclude wild long knots, which are topological
embeddings w: I — R! x D! that do not extend to an embedding N(7) < R? x D*.
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Remark 1.0.8. Classically, a knot is defined as an element of Emb(S',S?). The relation
between the space of long knots K and the space of knots Emb(S!, S?) is given by

Emb(Sl, S3) ~ IC Xso(Q) SO<3),

cf. [Bud08, Theorem 2.1]. In particular, this induces an isomorphism between 7 (K) and
7T0(Emb<sl, 83))

Convention 1.0.9. From now on, we abbreviate long knots as knots and we call an
element in Emb(S*, S?) an ordinary knot.

Definition 1.0.10. Let K and K’ be two knots. The connected sum K#K' is the
concatenation of K and K’. More explicitly, K#K': I — R? x D! is defined by

, {%K(%) -(0,0,3)  ifte[o,
1

Remark 1.0.11. The connected sum of two knots K and K’ is an element of K, because K
and K’ are germ equivalent to ¢ near the boundary Ol of I.

Proposition 1.0.12.
i) If Ki~K] and Ko~ KD, then Ky # Ko~ K # K. In particular, the connected sum

operation # is well-defined on my(K).
ii) The connected sum operation is commutative, i.e. K#K'~K'#K.

Sketch. 1) For i = 1,2, let F; be an isotopy between K; and K. Then the concatenation
of F} and F, gives an isotopy of K;1# K, and K|#K).

ii) See [Sch49] for details. The desired isotopy is given by sliding K; through K>, as
visualised in Figure 6. U

FIGURE 6. The connected sum of two knots is commutative up to isotopy.

Corollary 1.0.13. The connected sum operation # endows mo(K) with the structure of a
commutative monoid, where the identity is given by the unknot.
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Sketch. Recall that the operation of a monoid needs to be associative. The associativity
of # follows from a standard argument involving a reparameterisation of the interval I.
Note that concatenation of a knot K with an unknot does not change the isotopy class of
the knot K. [l

1.1. Knot invariants. Knot invariants are functions that assign to every knot an element
in a set, group, ring etc., such that equivalent knots have the same value. It has been an
important problem to find practically computable knot invariants v that distinguish two
knots up to isotopy. This section aims at giving a basic introduction to knot invariants.

Definition 1.1.1. A knot invariant with values in a set R is a map* f: m(K) — R.

A continuous map between two topological spaces induces a map between their sets of
connected components, which yields the following proposition.

Proposition 1.1.2. A continuous map f: I — X of topological spaces induces a knot

invariant f.: mo(K) — mo(X). O
Remark 1.1.3. Using the bijection my(K) = mo(Emb(S*, S?)), the notions of knot invariant
and invariant of ordinary knots coincide. 0

Convention 1.1.4. From now on, we only consider knot invariants with values in sets
underlying abelian groups. However, we do not require that knot invariants are monoid
homomorphisms.

Proposition 1.1.5. Let A be an abelian group, then H°(IC; A) = Morget (m0(KC), A) is the
group of all knot invariants with values in A. O

Let us discuss some examples of knot invariants.

Example 1.1.6. Consider the free abelian group Z[my(KC)] generated by elements of 7 (k).
The canonical knot invariant is ix: mo(K) — Z[mo(K)], [K] — [K]. Note that any knot
invariant factors through ix.

Example 1.1.7. A polynomial knot invariant is a knot invariant with values in a poly-
nomial ring. For ordinary knots, there are well-known polynomial invariants like the
Alexander polynomial A(t) (cf. [Ale27]), the Conway polynomial V(t) (cf. [Con70]) and
the Jones polynomial V' (¢) (cf. [Jon85]).

We recall briefly the definition of the Conway polynomial for ordinary knots.

Definition 1.1.8. The Conway polynomial is a knot invariant taking values in Z[t]. It is
defined by the following “skein relations™

V(Q) - L .
() <(X) <€)

~N -

Definition 1.1.9. A knot invariant f: mo(K) — A is additive if it is a monoid homomor-
phism, Le. f(K1#K3) = f(K1) + f(K2) for any Ky, K3 € mo(K).

Proposition 1.1.10. The second coefficient co of the Conway polynomial is an additive
knot invariant.

4Sometimes we abuse notation and call the induced map K — 7o(K) — R a knot invariant.
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Proof. Let K, Ky be two knots and let U be the unknot. By [CDM12, Exrcise 2.6] we
have that V(K #K,) = V(K;)V(K3). By [Kau81], we can write for any knot K

V(K) =14 co(K)t? + cy(K)t* + - + con (K"
Thus we have co(K1#Ks) = co(K1)ca(Ka)+co(Kq)eo(Ka) = co( K7)+c2(Ky) as desired. O

2. VASSILIEV INVARIANTS

In this section we present the definition of Vassiliev’s knot invariants and discuss their
properties and the related topics of clasper surgery and grope cobordism of knots.

2.1. Definition of Vassiliev invariants. We will use a combinatorial description for
the definition of Vassiliev invariants, which is easy to compute but lacks a geometric
interpretation. To remedy this, we want to sketch Vassiliev’s original approach as a
motivation, cf. [Vas90].

Instead of focusing on one specific knot invariant, Vassiliev considered the whole set®
HO(KC; A) of all knot invariants with values in a given abelian group A. The main steps of
his computation are the following:

i) Embed K in the space CF(I,R? x D, ¢) of all smooth maps from I into R? x D!
which are germ equivalent with ¢ on the boundary (cf. Definition 1.0.2).
ii) Compute the homology of the complement of K in C§*(I, R? x D!, ¢).
iii) Use Alexander duality to obtain H*(K; A), and in particular H°(KC; A).

In order to perform step ii) and iii), Vassiliev finds a filtration by finite dimensional
vector spaces {I}}en, which approximate the space C(I,R? x D!, ¢). Intersecting this
sequence with CF(I,R? x D', ¢) \ K yields a filtration

00 C0oyC--Co,Copy1 C--- CCP(LR*x Do)\ K.

Now, Vassiliev computes Ho(CZF(I,R?* x D!, ¢) \ K; A) via the homology spectral se-
quence associated to this filtration. Furthermore, this filtration gives a filtration of
Ho(CF(I,R?* x D!, ¢) \ K; A). In each of the finite dimensional vector spaces we can apply
Alexander duality to obtain a filtration

ViCVAC CVACVA, Ce CHOK A).

n

Finally, a Vassiliev invariant of degree n with values in A is defined to be an element
of VA,

Remark 2.1.1. Let K € CZ(I,R? x D!, ¢) be a smooth map. We call a point p € im(K)
a singularity of K if K~!(p) contains more than one element. The filtration (o;);>1
of CF(I,R? x D', ¢) \ K arises by distinguishing K by the type and the number of its
singularities. Thus it is natural to conjecture that the system of Vassiliev invariants classify
knots. On the other hand, it is still open whether Vassiliev invariants detect the unknot.

We now give the combinatorial definition of Vassiliev invariants.

Definition 2.1.2. Let K: I — R? x D! be a smooth map such that K and the fixed ¢ (cf.
Definition 1.0.2) are germ equivalent at 0I. A double point of K is a point p € im(K') such
that K~1(p) consists of exactly two points ¢; and t, with linearly independent T}, f and
T, f. Define by X' C CF(I,R? x D!, ¢) \ K the subspace of maps, which have only finitely
many double points as singularities.

SVassiliev used another mapping space instead of /C, which is homotopy equivalent to K. For simplicity,
we just write K instead.
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Construction 2.1.3. Let v: my(K) — A be a knot invariant. Then v induces a function
v on X UK by resolving any double point p into an overcrossing p* and an undercrossing
p~, and setting v(p) = v(p™) — v(p7).
/ \ /& \ [/ /\
[ 1 |
vl\ /_vl\ \/ V\\//
p+

-~

p D

Proposition 2.1.4. The extension v of v in Construction 2.1.3 does not depend on the
order in which we resolve the double points.

Proof. Let K* € X and enumerate the double points of K* by pi,ps,...,pm. We
can resolve each p; into an overcrossing p* and an undercrossing p~. By resolving the
singularities in all possible orders, we obtain a set { K. }.c(o,13= of 2™ knots (up to isotopy).
Here the knot K, with € = (1,€9,- -+ ,&,,) is obtained from im(f) by resolving the double
point p; into p;” for & = 0 and p; for &, = 1. Set | ¢ [= D", &;, then one obtains
inductively the formula
P(E*) = ) (=DFlu(K),
ee{0,1}™
which witnesses that v does not depend on the order in which we resolve double points. [

Definition 2.1.5. A Vassiliev invariant of degree at most n is a knot invariant v such
that the induced function v on X' U K vanishes for all K* in X with more than n double
points.

Example 2.1.6 (|Bar95, Section 1.4]).
i) The n-th coefficient ¢, of the Conway polynomial is a Vassiliev invariant of degree
at most n.
ii) After a suitable change of variables, each coefficient in the Taylor expansion of the
Jones, HOMFLY, and Kauffman polynomials is a Vassiliev invariant.
iii) After a suitable change of variables, each coefficient in the Taylor expansion of the
Reshetikhin-Turaev ‘quantum-group’ invariant is a Vassiliev invariant.

We can compute the set of Vassiliev invariants in degree 0, 1 and 2.

Proposition 2.1.7.
i) Every Vassiliev invariant of degree at most 1 is constant.
ii) The group of Vassiliev invariants of degree at most 2 is generated by c.

Proof. See [CDM12, Proposition 3.3.1-3.3.3| for a proof. O

The number of double points of elements in X induces us a filtration on Z[m(K)] as
follows.

Definition 2.1.8. Recall the free abelian group Z[my(K)] from Example 1.1.6. Denote by
IC,, the subgroup of Z[m(K)] generated by the linear combinations of equivalence classes of
knots which are obtained by resolution of singular knot K € 3’ with n double points. Note
that IC,,.1 C K,, by resolving just one double point. This yields the Vassiliev filtration

Ko =ZmK))D2K1 2K 2 2K, 2Kpi12 ...
We can reformulate the definition of Vassiliev invariants as follows.

Proposition 2.1.9. A knot invariant v is a Vassiliev invariant of degree at most n if and
only if its extension v: Zlmy(IC)] — A factors through Z[mo(K)]/KCpn1- O
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In order to check whether Vassiliev invariants classify knots up to isotopy, one needs to
see whether for any two non-equivalent knots K; and K5, there exists a Vassiliev invariant
v such that v(K;) # v(K3). This motivates the definition of n-equivalence of knots.

Definition 2.1.10. Let n € N. We say two knots K; and K, are n-equivalent if
[K1] — [K3] € K. In other words, we have that v([K;]) = v([K3]) for every Vassiliev
invariant v of degree at most n.

Remark 2.1.11 (|[CDM12, Section 3.2.4]).
i) The collection of Vassiliev invariants classifies knots if and only if N,,>0/C,, = 0.
ii) (Gourssarov filtration) Let I7,/C be the set of knots which are (n — 1)-equivalent to
the unknot. We get the filtration

7o(K) =K D DK D [iyK D

and see that N,,>0/,,K = {unknot} if and only if Vassiliev invariants detect the
unknot.

2.2. Clasper surgery. Clasper surgery is a combinatorial description of the notion of
n-equivalence of knots. This section briefly recalls the special case of simple tree clasper
surgery, which will be sufficient for our applications. The reference for this section is
[Hab00].

Convention 2.2.1. From now on, we abbreviate simple tree clasper surgery by clasper
surgery.

Definition 2.2.2. A clasper C = NUBUE in R? x D! for a knot K € K is a connected,
oriented, compact surface embedded in the interior of R? x D! together with a decomposition
into three (unconnected) subsurfaces N, B, E that satisfy the conditions below. We call
the connected components of N, B, E nodes, leaves® and edges respectively.
i) Nodes are disks that are disjoint from K.
ii) Edges are disks, say parametrised by [0, 1] x [0, 1], that are disjoint from K.
iii) Leaves are disks that intersect K transversally in the interior and exactly once.
iv) For each edge, the two arcs {0} x [0, 1] and {1} x [0, 1] are attached to the boundaries
of leaves or nodes. These two arcs are not allowed to be attached to the same
leaves or nodes.
v) For each node, there are exactly three edges attached to it, where the attaching
regions are pairwise disjoint.
vi) For each leaf, there is exactly one edge attached to it.

Convention 2.2.3. Since we do not change our ambient 3-manifold R? x D!, we will not
mention the ambient manifold where a clasper is embedded.

Example 2.2.4. Figure 7 depicts two claspers for knots K; and K5 respectively.

64B” stands for “Blatt”, which means leaf in German.
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FIGURE 7. Visualisation of two claspers

Definition 2.2.5. For any clasper C = N U BU E in R? x D!, we can associate to it a
link Lo (defined up to isotopy) in a regular neighbourhood of C' by the following steps.

i)

ii)

iii)

Replace each node by a Borromean ring, such that each of the three edges meeting
the node becomes attached to different link component of the Borromean ring.
Each link component inherits the orientation of the boundary of the node. The
over- and undercrossings of the Borromean ring should be exactly as depicted in
the figure.

l

R

Remove the interior of each leaf.

/‘W\/>

H—

K

After performing step i) and ii), each edge connects two (images of) unknots K
and K,. We take the boundary of the edge, cut it into two connected components,
and add a full twist to connect these two components as shown in the figure below.
Thus we obtain a Hopf link. Finally we take connect sum of the Hopf link with K;
and KQ.

O=0) w(m)l:;::(m} R O==0

K Ko

Definition 2.2.6. Clasper surgery along a clasper C' is just O-framed Dehn surgery (cf.
[Sav12, Chapter 2|)of R? x D! along the associated link Lo. We denote the resulting
3-manifold (R? x D!)“.

Remark 2.2.7. More generally, we can perform clasper surgery on an arbitrary 3-manifold
M along a clasper C' C M° with framing coming from the disks N and B. We denote the
resulting manifold by M¢.
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Proposition 2.2.8 (|[Hab00, Proposition 3.3]). Let C' be a clasper for a knot K € I,
and denote by N(C') a regular neighbourhood of C' Then there is an orientation-preserving
diffeomorphism
P, N(C) — N(0)¢
that restrits to the identity on ON(C). In particular, ®;, extends to a diffeomorphism
Do: R? x D' — (R? x DY)¢
restricting to the identity outside the interior of N(C').

Remark 2.2.9. The map ®¢ is unique up to isotopy relative to R* x D'\ N(C)°, cf. [GS99,
Page 154].

Notation 2.2.10. Let C be a clasper for a knot K € K, and denote by K¢ € K the
result” of clasper surgery along C.

We will use the following combinatorial notation for claspers.

Definition 2.2.11. A unitrivalent tree is a (unrooted) binary tree with oriented nodes,
i.e. a cyclic ordering of the edges at each node. The degree® of a unitrivalent tree is the
number of nodes divided by 2.

Remark 2.2.12. Let I' be a unitrivalent tree with n leaves. Then the degree of I"is n — 1.

Notation 2.2.13. We can represent a clasper in a 3-manifold using a unitrivalent tree in
the following way:
i) To each node of the clasper we associate an inner node of the tree. The cyclic
ordering at an inner node is induced by the orientation of the boundary of the
corresponding node of the clasper.

v

ii) To each leaf we associate a leaf of the tree, which intersects the knot at the point
where the leaf of the clasper and the knot once intersected.

NW>
U K K
iii) To each edge of the clasper we associate an edge of the tree, attached to nodes and

leaves in the same (combinatorial) way as the corresponding edge in the clasper.
We define the degree of a clasper C' as the degree of the associated unitrivalent tree.

Surgery in a 3-manidold M along two framed links L; and Ly gives diffeomorphic results
if and only if L; can be transformed to Ly by a sequence of Kirby moves, cf. [Kir78|.

Translating Kirby moves into the language of clasper surgery, we obtain (among others)
the following move.

"The knot K€ depends on the choice of &, but it is independent up to isotopy by Remark 2.2.9.
8Warning: The degree of a unitrivalent is different from the notion of the degree of the underlying
tree.
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Proposition 2.2.14 ([Hab00, Proposition 2.7]). Let C' and C' be claspers for knots K
and K’ respectively. We have K€ ~ K'® when the pairs (K,C) and (K',C") are related

)

by “Habiro’s move 17, which is indicated in Figure 8.
\S 7N \S7NES
N9 @2)'

C )
FIGURE 8. Habiro’s move 1. The only difference of the pair (K, C) and

(K',C") are all drawn in the figure.

!
K K'
We will see in a moment that a clasper surgery along a clasper of degree n + 1 gives

an equivalence relation on my(XC), which coincides with n-equivalence of knots (cf. Defini-
tion 2.1.10).

Definition 2.2.15. Two knots K; and K, are called Cy-equivalent, k > 1, if there exists
a finite sequence of clasper surgeries along claspers of degree k that transforms K; into
K5 (up to isotopy). We denote this relation by ~¢,.

Remark 2.2.16. Cy-equivalence is an equivalence relation. Indeed, reflexivity and transitiv-
ity are clear. For symmetry, see [Hab00, Proposition 3.23|.

Remark 2.2.17. Since Dehn surgery is invariant up to ambient isotopy of the framed link,
cf. [Sav12, Chapter 2|, Cy-equivalence makes sense on my(K).

Proposition 2.2.18 (|[Hab00, Proposition 3.7|). Let 1 < k < I, then C}-equivalence is
stronger than Cj-equivalence. O

The following theorem is an important criterium to detect additive Vassiliev invariants.
We will use this in the proof of Theorem 3.2.6.

Theorem 2.2.19 ([Hab00, Theorem 6.17]).

i) The set mo(K)/~c, of Cy-equivalence classes becomes an abelian group, using
connected sum (cf. Definition 1.0.10) as addition and unknot as identity.

ii) The quotient map i : mo(KC) — mo(K)/~¢, is a universal additive Vassiliev invari-
ant of degree at most k — 1. More precisely, for every abelian group A and additive
Vassiliev invariant v: mo(K) — A of degree at most k — 1, there is a unique group
homomorphism U: mo(K)/~c, — A such that the following diagram commutes.

WQ(IC) % A

WO(IC>/NC]C

Theorem 2.2.20 (|[Hab00, Theorem 6.18|). Two knots Ky and Ky are C,,1-equivalent if
and only if they are n-equivalent.
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2.3. Gropes. Another characterisation of n-equivalence of knots can be given via grope
cobordism of knots. A grope is an embedded (CW)-complex in R3, whose boundary
components are knots. Conant and Teichner [CT04a| explain the connection between
gropes and clasper surgery and concluded that two knots K; and Ky are C,-equivalent,
if and only if K7 and K, (or more precisely their images) cobound a grope of degree n,
called a grope cobordism between K; and K5. We will encounter a reformulated version
of this connection in Theorem 3.2.7.

The aim of this section is to prove that a genus one capped grope of degree n gives a
A" family of embedded disks in R*® with a common boundary, cf. Lemma 2.3.19. This
technical statement will be an important ingredient in the proof of Theorem 3.2.6 in
Section 3. We will use this theorem in the next chapter to prove Theorem 3.2.6.

Definition 2.3.1. We define (genus one) grope recursively. A grope (G, p) of degree 1 is
a circle p embedded in R? which is ambient isotopic to an unknot. A grope (G, {pi}%;)
of degree n > 2 is a 2-complex embedded in R?® with n marked embedded simple closed
curves p;, which is constructed by the following steps:
i) A grope (Go,{p1,p2}) of degree 2 is a punctured torus with two embedded simple
closed curves p; and p,, which is ambient isotopic in R? to the one depicted in
Figure 9A.

(A) (Go, {a, 8}) (B) (Ga,a U{B;}71) (C) (G5, {ai}iy U{Bi =)

FIGURE 9. Visualisations of gropes of degree 2, 4 and 5.

ii) For n > 2, a grope of degree n is a union
(Gn = G, Uy UG2 Ug Gi, {pi}ie = {o f:l U {5}2:1)

of gropes (Ga, {, 8}), (Gk,{es}¥_;) and (G, {B;})—) of degree 2, k and I respec-
tively, that satisfy

a) l1<k<n—1l,and 1 <l<n-—1,and k+1=n,

b) 0Gy = a and Go NGy, = a; 0G, =  and G, NG, = (3, and

C) GkﬁGl :Oémﬁ.

Notation 2.3.2. We allow to abbreviate (G,, {p:}I,) as G,.

Remark 2.3.3. Note that the definition of gropes we give here is not as general as the one
given in |[CT04a].

Definition 2.3.4. For a degree n grope (G, {pi}i~,), we defined the bottom stage Tg,, as
the degree 2 grope (Gs, {a, 8}) to which (G, {os}i_,) and (Gi, {3;}._,) are attached in
Definition 2.3.1.

Similar to the case of claspers, we can also give a combinatorial description for gropes
using trees. To do this, let us first introduce a decomposition of a grope into tori.
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Proposition 2.3.5. Forn > 2, a grope (G, {pi}’-,) can be decomposed canonically into
n — 1 punctured tori. This is examplified in Figure 10.

FIGURE 10. The decomposition of a degree 4 grope into 3 punctured tori,
which are marked by different colours.

Proof. We prove the proposition by induction.
The base case is clear, since a grope Gy of degree 2 is by definition a punctured torus.
Now let n > 2 and assume that the proposition is true for gropes of degree at most n.
For a grope G, 11 of degree n + 1, we can by definition decompose it into gropes G, G,
and G of degree 2, k and [ respectively such that k + 1 =n + 1. By assumption, G}, and
G, can be decomposed into £ — 1 and [ — 1 punctured tori respectively. Thus G,,41 can be
decomposed into 1 + (k — 1) + (I — 1) = n punctured tori. O

Making use of the above decomposition, we associate to each grope GG,, a rooted labelled
unitrivalent tree of degree n.

Definition 2.3.6. A rooted labelled unitrivalent tree of degree n is a unitrivalent tree of
degree n, which has a chosen leaf as root and a bijection of the other leaves with the set
{1,2,...,n}. See Figure 11 for two examples.

FIGURE 11. Two labelled rooted trees. The black dots designate the roots.

Recall that in a rooted tree I, the parent (when it exists) of a node v is a node adjacent
to v which lies on the cycle-free path from v to the root. The other adjacent nodes to v
are called children. Call a node w a descendant of v if v lies on the cycle-free path from v

to the root. A unitrivalent subtree of I" is a unitrivalent subtree of I which contains the
root.

Definition 2.3.7. Let (G,,{pi:}/-,) be a grope of degree n > 2. Define its associated
rooted labelled unitrivalent tree I, using the procedures. Recall from Proposition 2.3.5
the decomposition of (z,, into n — 1 tori.

i) To each punctured torus in the decomposition of G,,, we assign an inner node’.

9We can also assign cyclic ordering to each inner node, depending on the orientation of the tori from
the decomposition, cf. [CT04a]
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ii) To each p; we assign a leaf, labelled by 1.

iii) To the boundary of the bottom stage, we assign the root.

iv) Connect the inner node representing the bottom stage to the root by an edge.

v) Connect two inner nodes by an edge if the two tori T}, 7T they represent have
non-empty intersection (i.e. 7y N Ty = 9Ty or T) N'Ty = OT3).

vi) Connect a leaf with an inner node by an edge if the curve p; that is represented by
the leaf lies in the torus represented by the inner node.

Remark 2.3.8. Let G,, be a grope of degree n and let I, be its associated tree. Then
every rooted labelled subtree I" of I, represents a subgrope of G,, which is given as the
union of the punctured tori that are represented by the inner nodes of I'. That is

{unitrivalent subtree of I, } <— {subgropes of G, }.
Using this combinatorial description, let us fix some notation for gropes.

Notation 2.3.9. Let (G, {pi}_,) be a grope of degree n and and let I, be its associated
rooted labelled unitrivalent tree. Let ) # S C {1,...,n}.
i) Let vg denote the inner node in I, such that the set of leaves that are descendants
of vg is exactly {p;}ics. Note that this is not defined for every S.
ii) Denote by Ts the punctured torus corresponding to vs. Note that Ts = Tg,, for
S={1,2,...,n}.
iii) Let Gs be the subgrope of G, corresponding to the smallest rooted unitrivalent
subtree I's of I'g,, which contains all leaves {p; }ics-
iv) Denote by N(Ts) be a tubular neighbourhood of T in R?, when Tj is well-defined,
otherwise take N(Ts) := (). Define the “tubular neighbourhood” of Gg as

N(Gs) = | J N(Ty).

S'CcS

Example 2.3.10. We use the grope G5 from Figure 9C to illustrate some of the notations.

(A) G5 and I'g,(red) (B) Punctured torus Ty 2 43 (C) Subgrope G345y (blue)

FIGURE 12. A grope of degree 5 and its corresponding rooted labelled
unitrivalent tree.

Given a grope (G, {p;}"_,), we can attach n disks to {p;}I; respectively. This way, we
obtain a ‘capped grope’ of degree n.

Definition 2.3.11. A capped grope (GS,{C;},) of degree n > 2 is a 2-complex embedded
in R? as the union of a grope (G, {pi}",) of degree n and n disks {C;}"_,, called caps,
that satisfy

i) 0C; = p; and C; N G,, = p; for 1 <7 < n, and
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i) CyNCy =0for1<i#j<n.

For the joy of the readers, see Figure 13 for an example of a capped grope of degree 5.

FIGURE 13. A visualisation of a capped grope (G¢, {C;}2_,) whose associ-
ated uncapped grope is homeomorphic to Figure 9C.

Notation 2.3.12. We allow to abbreviate the notation (G¢,{C;},) by G..

Notation 2.3.13. Given a capped grope (G, {C;}" ) of degree n > 2, we denote by
(G, {pitiy) = (G \ UL, C?,{0C;}1 ) the uncapped grope associated to G¢. Also let
N(C;) be a tubular neighbourhood of C; in R3.

Now we introduce cap surgery of a capped grope (G¢, {C;}7,) along one of its caps Cj,
which is the main ingredient of the proof of Theorem 2.3.19.

Construction 2.3.14. Let ¢: (D* x D™~* Sk=1 x Dm=k) < (M, N) be a smooth em-
bedding of pairs of smooth manifolds, where M is a m-dimensional manifold and N is a
codimension 1 submanifold of M. Furthermore assume that im(1)) N N = ¢(SF~! x D™7F).
An ambient surgery along 1) is the procedure to obtain a new codimension one submanifold

NV of M by the following

NY = N\ p(SF1 x D™ F) U W(DF x gmETL),
w(sk—lxsm—k—l)

Lemma 2.3.15 (|GS99, Page 154]). The submanifold N¥ of M that is obtained by ambient
surgery along vV is uniquely determined up to diffeomorphism by the isotopy class of v. [

Definition 2.3.16. A surgery of (G¢,{Ci},) along one of its caps C; is an ambient
surgery along an embedding

i (D* x D', S x DY — (R, T))

where T is the punctured torus in the decomposition of G,, (cf. Proposition 2.3.5) in which
p; = 0C; is embedded, and where 1); satisfies the following properties:
i) ¢¥i(D? x {3}) = Ci and ¥i(S' x {3}) = 9C;,
i) 1;(S* x D) is a tubular neighbourhood of dC; in T},
iii) 1;(D? x D') is a tubular neighbourhood of C; in R3, and
) (D% x DY) N'T; = (St x D).

1v
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Remark 2.3.17. The existence of a suitable v; follows from the existence of tubular
neighbourhoods of submanifolds, cf. [Hir76, Theorem 4.6.3, Theorem 4.6.4]. Since any two
tubular neighbourhoods of a submanifold are isotopic (cf. [Hir76, Theorem 4.6.5|), the map
1; is determined up to isotopy by the conditions i), ii), iii) and iv) in Construction 2.3.16.
Thus, the new submanifold T;p is determined up to diffeomorphism.

attached to
lower stage
of the grope

T, Surgery on Cj

FIGURE 14. Surgery of a capped grope along its cap Cj.

Proposition 2.3.18. In the situation of Definition 2.3.16, the new submanifold Tl-wi
obtained from the ambient surgery is homeomorphic to a disk with boundary OT;.

Proof. For a visualisation of this, see Figure 14. First we attach a disk along the boundary
of T;, making it a torus j\’i, which has FEuler characteristic —2. The procedure of doing the
surgery is to remove an annulus from 7; and glue back two disks. Thus the difference of
the Euler characteristic of 7} Uyy, D? and T; is 2. In other words, the Euler characteristic
of T Uypr, D2 is 0. By the classification of surfaces we have TV Uyy, D? ~ S? and thus
T ~ D2 such that T} = 91T} O

Finally, we can state precisely and prove the theorem at which we worked towards the
whole section.

Theorem 2.3.19. Let (G5,{C;},) be a capped grope of degree n > 2. Then there exists
a continuous map
hy: D? x A™1 — R3,

which is a family of embeddings with fixed boundary in a neighbourhood of G¢, i.e. it has
the following properties:

i) For every v € A", the restriction h,(— x {v}): D* = R3 is an embedding,

ii) h,(S' x {v}) = 8G,, for every v € A", Furthermore, h,(p,v) = h,(p,w) for

every v,w € A" pe St

iii) For every v = (t1,ta,...,t,) € A" in barycentric coordinates, we have
ha(D? x {v}) € N(Gs,) U | N(C),
SESU

where S, = {1 <i<n|t; #0}.

Proof. We prove the theorem by induction.

For the base case n = 2, we want a map hy: D? x Al — R? satisfying i), ii) and iii).
First we construct two disks D, and Dy that will in a moment turn out to be the images
ha(D? x {(0,1)}) and hy(D? x {(1,0)}). For i = 1,2, let us do surgery of G along C; via
the embedding 1;: (D?,S') x D' — (R3, G5) as in Definition 2.3.16. By Proposition 2.3.18,
we obtain two disks (See Figure 15 for a visualisation of this two surgeries.)

Di = G;Z}Z = GQ \ T/}Z(Sl X f)l) U?l)i(SlXSO) O[Z‘(]D2 X SO) - RQ X Dl,
such that D; = 0Gy. We see from the construction that D; C Gy UN(C;).
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P v S SN P TP NPe PN

surgery C4 surgery Co

(Gg’ Cla 02)

FIGURE 15. Surgery of G§ along the caps C; and C yields disks D; and
Dy respectively.

Now, let us define hy, which will be an isotopy from D; to D, in R3. First, let us
denote the space @ = 11 (S* x D) N1)y(S' x D) = ¢h;(D? x D) N1hy(D? x D). Consider
the space D := 9;(D? x D') Ug 1»(D? x D'). Using for example Seifert—van Kampen
theorem, we can easily see that D is homeomorphic to the standard unit 3-ball D? in R3.
The intersection T := D N Gy = 91 (S' x D) Ug 15(S' x D) is a punctured torus, by an
argument via Fuler characteristic. See Figure 16 for a visualisation of D and T

T in Go

FIGURE 16. A visualisation of D, T and T" embedded in Gs.

In particular, we have 0D = 51 Usr 132 where,
Dy == (D” x S U (¢(S" x D)\ Q°),
Dy =91 (S" x DY) U (1h5(D? x $°) \ Q°).
See Figure 17 for a visualisation of 151 and 152. Furthermore, we have
Dy = (G2 \ T°) Upr Dy,
Dy = (Go\ T°) Ugr Dy,

Thus we can fix an isotopy'® gis: lN)l x 1 — D in D from l~)1 to IN)Q restricting to the
identity on 0T. In other words, 9172|1~)1x{t} is an embedding for ¢ € I, 9172|51X{0} =1idp,

and 9172(51 X {]_}) = 52.

10We can choose a homeomorphism from D to D? which maps 51 and .52 to the upper- and lower
hemisphere of D3 = S? respectively. Pulling back an isotopy in D> from the upper hemisphere to the
lower hemisphere gives such an isotopy g1
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FIGURE 17. 51 C D; and ﬁQ C D,.

This leads us to define
EQ:D1XA1—>DUG2§R3

(p, (1 —t,1)) — gia(p,t) ifpe Dy
| 7 p otherwise

As for hs, we choose a parametrisation ¢: D2 — D; of D; and define hy == hyo (g xidar).
From the surgery construction of D; and D, and definition of hs, we have that ho satisfies
conditions 1), ii), iii) and iv) as desired.

Induction step: For n > 3, assume that the theorem is true for capped gropes Gf, of
degree k < mn — 1. We prove the theorem for capped gropes (G¢,{C;}" ;) of degree n.

We consider the associated uncapped grope G,, as a union of (T, , {c, 8}), (G, {pi }ics.)
and (G, {p;}jes;) with #S, =k, #Ss = [ and k + [ = n (cf. Definition 2.3.1).

Let r = a or r = . First we construct two continuous families of embedded disks
{Dyr }yrenss,—1 in R?, which will turn out to be the images h,(D? x {v" € AF> ™" C An})

By assumption, G4, -1 gives continuous maps

h": D? x A#S L 5 R3,
such that for every v" = ({1)kes,, w” € A#5 1 we have the following.
i) The map A"|ps, ¢, is @ smooth embedding of a disk in R3.
ii) We have h"(S' x {v"}) = r. Furthermore, h"(p,v") = h"(p,w") for every p € S,
iii) We have
h'(D? x {v"}) € N(Gs) U | JN(Cy).
ses
where S,r = {k € S, | t; # 0}, and Gg, with is the subgrope of Gg, defined via
Notation 2.3.9.iii).
Before we continue, let us define the abbreviation
Cyr = h"(D* x {v"}),
and for v® € Al%l=1 and v# € Al%s1=1 denote
GTCJ‘l,UB = Cva Ua TGn Ug Cv,ﬁ.

Note that (G¢. s,{Cu,Cys}) is a degree 2 capped grope whose associated uncapped

grope is T¢,, .
By of [Pal60, Theorem C |' we obtain two continuous families of embeddings 9"

Y": (D? x DY x AT QL DU AFSH) 5 (R3 T, )

HThis theorem states that under certain conditions, an n-isotopy (isotopy parametrized by A™) of
a submanifold can be extended to an n-isotopy of its tubular neighbourhood. A more general theorem
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extending h",r € {a, 8} such that for every v", w" € A%~ we have the following:
i) The restriction ¥, == wr|(D2><D1)><{vT} is an embedding and wUT\DQX{O} = hT]DQX{UT}.
Furthermore im(¢") N T, = im(9¥" g1 pig arse—1)-
ii) We have ,-(D? x {3}) = C,r and ¥, (S' x {3}) =7
iii) We have tyr|gi 1 = Yurlgi o and ¥,-(S' x D) is a tubular neighbourhood of r
in TGn‘
iv) We have that im(¢,) is a tubular neighbourhood of C, in R3.
The above properties i)-iv) determine v, : (D* x D', S x D!) — (R?, Ty, ) up to isotopy.
Thus, for r € {a, 8}, we can perform surgery on G¢, , along C,r via the embedding 1),
and obtain a disk 7

Dy = (T, \ ¥ur (8" x DY) Uy, (s1xs1) tur (D* x S).

As a result, we obtain two continuous families of embedded disks {Dyr},rea#s—1 in R3
with boundary 9G,,. By construction we have D,» C N(Gg)U|J,c4 N(Cs) for every element
V" = (tp)res, € A 7L and S, == {k € S, | tx # 0} and G5 the corresponding subgrope
of G#Sr#fl-

Now we are going to define h,. In other words, we need to find an embedded disk
in R3, satisfying ii) and iii) of the theorem for every w € A" '. We are going to use
that for & + [ = n, the join A* ! x A"~ is homeomorphic to A"~!. In other words,
for every w € A"! there exists a unique v® € Ag;l, v e Afg_ﬁl and ¢t € [0, 1] such
that w = (1 — t)v™ + tv”. Recall that #S, = k and #S; = [ and we intend to make
Dy = hp(D? x {v7}) for v € A#5=1 C A"~ and r € {a, 3}. Therefore, for every pair of
v™ and v?, we will construct an isotopy Ay s from Dye to D,s such that hya ,s(Dye x {t})
will turn out to be the image h,(D? x {(1 — t)v® + tv?}).

Let us define, similar to the base case, the isotopy hea s for e* = (1,0,...,0) € A*!
and ¢® = (1,0,...,0) € A"!. We consider the degree 2 capped grope G¢o .5 with caps
Ceo and Cys. Let us define the space @ := 1)¢a (S x DY) Na)s(S' x D), and consider the
space D = 1h.a(D? x DY) Ug 1.5 (D? x D'), which is homeomorphic to D3. The intersection
T = Dea s NTg, = tea(S" X D) Ug s (S' x D) is a punctured torus. Similar as in the
base case, we have

aD:DeO‘UGTa D.s

e®,eB €
where
Eea = %a (D2 X SO) U (weﬁ<sl X Dl) \ Q)a
Beﬂ = ¢ea(31 X Dl) U (%B(D2 X SO) \ Q>7
and

Deo = (T, \ T 5) Uor,,, 5 Dee,

D@B = (TGn \Teoa’e,g) UaTea,eﬁ Deﬁ.

Thus we fix an isotopy geo s : Do« x I = D from Deo to 565 which restricts to identity
on d7.a« .s. Then we define

hea oot Dea X I = Dea oo UTg, C R
gea 66 p,t lf p E ﬁea
(p,t) = { (p:9)

P otherwise

says that for two manifold M, N (without boundary), the map Emb(M, N) — Diff(M, N) is a Hurewicz
fibration, cf. [Theorem C][Pal60].
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For any other pair v®,v?, define D, = 1,a(D? x D') Ug ¥,5(D? x D). Then we define
Gyo 8 by mapping (Dye, D,s, D,,) homemorphically to (Do, Dys, D) via 4" for r € {a, 5},
and pull back the isotopy gea .s:

~ g,ua ,’UB

Dyo x 1 D,
Ypa ot g xidy { erotp !t xidy
o _
Deo x1 Goa D

Now we define En: Dea x A™1 — R3 by mapping
(p, (1= )0 +10%) = (Yr 0 95") (e (Y 00l (), 1))

if gea o8 (e 0 Uyd (p), 1) € Yer(D? x DY) with r € {a, B}, and (p, w) + p otherwise.
Finally, we choose a parametrisation ge: D? — D, of D.. and define the sought-after
map hy, == hy 0 (gea X idan-1). By construction h,, satisfies i) to iii). O

3. MANIFOLD CALCULUS ON KNOTS

Manifold calculus is a method introduced by Goodwillie and Weiss [GKWO01; Wei99|,
which produces a sequence of functors “approximating” a given "good" functor on the
category of open sets of a manifold. Given two smooth manifolds M and N, we can apply
manifold calculus to the embedding functor Emb(—, N): Open (M)*® — CGH. In this
way we can obtain information about the space Emb(M, N) by studying the embedding
functor, and analysing its sequence of approximations. In this section we are going to
briefly introduce the basic building blocks of manifold calculus, apply this technique to
the space of knots and see how it relates to Vassiliev invariants.

3.1. Manifold Calculus. The main reference for this section is [BW13] and [Wei99],
which also contains further motivation for manifold calculus.

Definition 3.1.1.
i) Denote by CGH the topological category of compactly generated weak Hausdorff
spaces.
ii) For a manifold M, denote by Openy (M) the category of open subsets of M
which contain OM. Objects of Openy (M) are the open subsets V' of M such that
OM C V', and morphisms of Open, (M) are the inclusions of these open subsets.
For a manifold M’ without boundary, we will simplify the notation as Open (M’).

Definition 3.1.2 (|[Wei99]). A smooth codimension zero embedding i,: (V,0V) — (W, W)
between smooth manifolds V' and W is an isotopy equivalence if there exists a smooth
embedding i,,: (W,0W) — (V,0V) such that i, o i, and i, o i, are isotopic to iduw,ow)
and id(y,gv) respectively.

Definition 3.1.3. Let M be a smooth manifold dimension m. A good functor on
Openy (M) is a functor F': Open, (M) — CGH of topological categories, which
satisfies the following conditions:
i) (isotopy invariant) If i € Morgpen(ar)(V, W) is an isotopy equivalence, then F (i) is
a weak homotopy equivalence;
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ii) For any filtration ... V; C V44 ... of open subsets of M, the canonical map (coming
from the universal property of holim'?)

1€
is a weak homotopy equivalence.

Theorem 3.1.4 (|[Wei99, Proposition 1.4]).
i) Let M and N be smooth manifolds without boundary with dim M < dim N. Then
the embedding functor

Emb(—, N): Open (M) — CGH
V +— Emb(V, N)
s a good functor.

i) Let M and N be smooth manifolds with boundary with dim M < dim N, and let
f: M — N be a fired smooth embedding. Then the embedding functor

Emby(—, N, f): Open, (M) — CGH
V = Emby(V, N, f)
15 a good functor.
iii)
Now we are going to construct the approximation sequence for good functors.
Definition 3.1.5. Denote by [n] the set {0,1,...,n}.
i) Define the category Pow([n]) as the category whose objects are the subsets of [n]

and the morphisms are inclusions of subsets.

ii) Define the full subcategory Pow([n])y of Pow([n]), whose objects are the non-
empty subsets of [n].

Definition 3.1.6. For a manifold M without boundary, a good functor F'is a polynomial
functor of degree at most n if for every open subset U € Open (M) and Ag, Ay, ..., A,
pairwise disjoint closed subsets of M which lie in U, the (n + 1)-cube

x: Pow([n]) - CGH
S F(U \ Uies 4;)

is homotopy cartesian, i.e. we have that x(0) — holimg.p x(S) is a weak homotopy
equivalence. In other words, F(U) — holimg,y F(U \ Ujes4;) is a weak homotopy
equivalence.

Remark 3.1.7. One obtains the definition of polynomial functors of degree at most n for
manifolds M with boundary by replacing Open (M) with Openy (M) and requiring that
cach A; has empty intersection with OU so that F'(U \ U;esA;) is well-defined.

The name ‘polynomial functor’ may come from the following criterium for polynomial
functions.

Lemma 3.1.8. A smooth function p: R — R satisfies
> (=)*p (Z x) =0 (3.1.1)
SCln] i€s

for any real number xg,x1,...,x, if and only if p is a polynomial of degree < n. O

2For the definition and properties of the homotopy limit, see [BK72, Chapter XI.3.2].
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Definition 3.1.9. Let M be a smooth manifold and let n € N. Define Openj; (M) to be
the full subcategory of Openg (M) whose objects are the open subsets W of M that are
diffeomorphic to N(@M) U (| |*_, R™) with 1 < k < n. Here N(OM) denotes a (non-fixed)
tubular neighbourhood of OM in M.

For a manifold M’ without boundary, we will simplify the notation as Open” (M).

Definition 3.1.10. Let M be a manifold and let F' be a good functor, the n-th Taylor
approximation T, F of F is the homotopy right Kan extension

Open} (M)®® < Open, (M)

CGH

of Flopeng(arer along the inclusion 4, : Openj (M)*” — Open, (M), together with the
natural transformation 7, : F' — T, F' coming from the universal property of the homotopy
right Kan extension. Written as a homotopy limit, the functor T, F' is

T,F(V) = hmglci{/n F(W).
WcOpen} (M)

Example 3.1.11 ([Wei99, Section 0]). Let M, N be smooth manifolds (without boundary).
The first Taylor approximation T; Emb(V') of the embedding functor Emb(—, N) is weakly
homotopy equivalent to the immersion functor Imm(—, N'), which associates to an open
subset V' C M the space of immersions Imm(V, N).

Proposition 3.1.12 (|Wei99, Theorem 3.9, Theorem 6.1]). Using the notation from
Definition 3.1.10, the pair (T,,F,n,) has the following properties:
i) The functor T, F is a polynomial functor of degree at most n,
ii) For any V € Open} (M), n,(V) is a weak homotopy equivalence.
iii) If F' is a polynomial functor of degree at most n, then n, is a weak equivalence, i.e.
(V) is a weak homotopy equivalence for every V € Openy (M).
iv) If u: F — G is a natural transformation where G is a polynomial functor of degree

at most n, then (up to weak equivalence) the natural transformation u factors
through T, F'.

Remark 3.1.13. In other words, the natural transformation n,: F — T,F is the best
approximation of F' by a polynomial functors of degree at most n and T, F' is unique up
to weak homotopy equivalence.

Definition 3.1.14. Let I be a good functor. The Taylor tower of F' is the sequence of
natural transformations ri: T;F — T;,_1F with ¢« > 1, that are induced by the inclusion
Open}; ' (M) — Open), (M).

F
n n—1 0
NMn+1 "
. TH) Tn+1F Tﬂ> TnF 7"—71,> Tn—lF Tn—1> e 7”1 > ToF

Definition 3.1.15. Let M be a smooth manifold and let F' be a good functor. The Taylor
tower of F' converges if for every V' € Openy (M), the map n(V): F(V) — holim,, 2o T, F (V)
is a weak homotopy equivalence.
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The Taylor tower of a good functor does not converge in general. However, for some
embedding functors, we have the following convergence criterium.

Theorem 3.1.16 (|[GKWO01, Corollary/Summary 4.2.4]). Let M and N be two smooth
manifolds. If dim N — dim M > 3, then the Taylor tower of the embedding functor
Emb(—, N) on M converges.

The theorem is not applicable to the embedding functor
Embs(—,R?* x D', ¢): Open, (I)> - CGH
V + Emby(V,R? x D', ¢)

corresponding to the space K. Indeed, the convergence fails, because the set m(K) is
countable, but the homotopy limit of the corresponding Taylor tower can be shown to be
uncountable. However, we will see that the Taylor tower of this functor is related closely
to Vassiliev invariants. This way, it still gives interesting information about K.

3.2. Vassiliev invariants via Taylor tower of K. In this section we will prove that
the n-th Taylor approximation of the embedding functor corresponding to K induces a
Vassiliev invariant of degree at most n — 1, cf. Theorem 3.2.6.

Notation 3.2.1. For the rest of this section, we will only consider the embedding space
and the corresponding embedding functor Embs(—, R? x D!, ¢), denoted by Emb(—).

For the proof of Theorem 3.2.6, we need the following a non-functorial description of
the spaces T,, Emb(I) for n > 1.

Situation 3.2.2. Let Jy = [ag, bol, J1 = [a1,b1], ..., Jn = [an,by], ... be pairwise disjoint
closed subintervals of I such that b; < a;;1 for i > 0 (see the picture below). For S C N,
let Jg = UjesJ; and let Embg(I) := Emb(I\ Jg). For an element K € K = Emb(I), let
Kg = Ky ;, be the restriction of K to I\ Js.

Definition 3.2.3. Recall the category Pow([n]).p of subsets of [n] = {0,1,--- ,n} that
are non-empty, cf. Definition 3.1.5.
i) Define the functor A_cp,: Pow([n])zy — CGH via S — Ag, where Ag is the
standard (#S — 1)-simplex labelled by S.
ii) Define the functor Emb_cp,: Pow([n])z — CGH via S — Embg(I).

Proposition 3.2.4. Letn > 1.
i) The space T, Emb(I) is weakly homotopy equivalent to the space
hé)i{gm Embg(I) = Nat(A™=", Emb_c, (1)),
SC[n]

where Nat denotes the space of natural transformations.
ii) The natural map n,(I): Emb(I) — T, Emb(I) sends an embedding f € Emb(I) to
the “constant” natural transformation Consty, given by

Consty: A_cpp — Emb_cpy
Ag = [fs.



26 YUQING SHI

Proof. 1) Since T,, Emb is a polynomial functor of degree at most n, the map
T, Emb(I) — holim T, Emb(I\ J
mb(T) = holim T, Emb(I'\ Js)

is a weak homotopy equivalence, by Definition 3.1.6. Since we have I\ Jg € Openj (I),
we know that T,, Emb(I'\ Jg) ~ Emb(I\ Js), by Proposition 3.1.12.ii). Therefore we see
that T, Emb(I) ~ holimggcn,) Embg(I).

ii) For any S C N, the composition of maps

Emb(I) =% T, Emb(I) —— holim g5 Embs(I) —> Embs(I)

ScCln]
sends an embedding f € Emb(I) to the restriction f[y, ;, € Embg(I). Thus 7,(I)(f) maps
every Ag to fs. O]

The map 7,,(I) induces a knot invariant 7,(I),: m(K) — m(T,, Emb(I)), cf. Proposi-
tion 1.1.2. The rest of this section is concerned with the proof that n,(I). is an additive
Vassiliev invariant of degree at most n — 1.

Theorem 3.2.5 (|[BCKS17, Section 4, Section 5|). Let n > 1. The set mo(T,, Emb(I))
of path components of T,, Emb(I) admits an abelian group structure, such that the map
Nn(D)s: mo(KC) = mo(Ty, Emb(I)) becomes an additive knot invariant.

Thus in order to prove that 7, (I). is a Vassiliev invariant of degree at most n — 1, we
only need to prove that 7, (I). factor through mo(K) — m(K)/~¢,, cf. Theorem 2.2.19.

Theorem 3.2.6 (|[BCKS17, Theorem 6.5|). Let Ky and Ky be two knots with Ky ~¢, Ko,
then 1 (1) ([K1]) = 1 (1)« ([K2]).-

Now we give a new proof of Theorem 3.2.6 using the description of T,, Emb(I) from
Proposition 3.2.4, clasper surgery and gropes (Lemma 2.3.19). Compared with the original
proof in [BCKS17|, our proof is more gemeotric and does not need the construction of a
further model for T,, Emb(—).

Recall from Definition 2.2.15 that [K;] ~¢, [K»] if K; and K, are related by a finite
sequence of (simple tree) clasper surgeries of degree n (and isotopies). Thus it is sufficient
to prove that for any knot K € K and any clasper C' of degree n for K, there is a path
between 7, (K) and 1,(K°) in T, Emb(I).

Recall from Situation 3.2.2 that Jy, Ji, ... are defined as pairwise disjoint closed subin-
tervals of I°. We assume that (J;);> is chosen such that for a given knot K and clasper
C, each Jy, Jq, ..., J, contains exactly one preimage of an intersection point of K with a
leaf of the clasper C.

In [CT04b]|, Conant and Teichner discovered how to relate a capped grope of degree n
with a clasper surgery of degree n, which plays an important role in the proof.

Theorem 3.2.7 ([CT04a|). Let n > 2. There exists a knot K € K which is isotopic to
K€, and such that

i) the images of K and K are equal outside Jo. Furthermore, K|, and [?|JO intersect
only at their endpoints, denoted by A and B;

i) the knot'® K (Jo)Uap K (Jo) is an unknot, and bounds a capped grope (G, {D;}",),
such that for 1 < i < n, the cap D; intersects K(J;) = K(J;) transversally and
exactly once;

iii) the intersection of GS with im(K) Uim(K) is

(K(o) Uan K(h)) U (Din K ()
1<i<n

B3We abuse the word “knot” here for the image of a knot
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iv) the associated rooted unitrivalent tree I'g, of GS is isomorphic to the associated
unitrivalent tree of the clasper I'c. The root of I'g, is the leaf corresponding to the
leaf of I'c intersecting K (Jy).

In the case where n = 2, see Figure 18 for an illustration of Theorem 3.2.7.

FIGURE 18. A clasper surgery of degree 2 on a knot K. The curves K (Jy)

and K (Jo) cobound a capped grope of degree 2. The discs in grey are the
caps Dy and Ds.

Therefore it is sufficient for proving Theorem 3.2.6 to show that there is a path in
T,, Emb(I) connecting 7, (I)(K) and n,(I)(X).

Remark 3.2.8. Before we prove the theorem, let us see how a path in T,, Emb(I) looks like.
A path in T,, Emb(I) is a continuous map P: I — T, Emb(I) = Nat(A_cp,;, Emb_cp,) by
definition. By [Fox45, Theorem 1], we can rewrite P as a collection of continuous maps
Ps: Ag x I — Embg(I) for 0 # S C [n], such that for ) # 5" C S C [n], the following

diagram commutes:

Agx 1T —25 4 Embg(I)
S'CS s'cS

AS’ x I P—> EmbS/(I)
S/
Thus in the proof of Theorem 3.2.6, we want to find such a collection of maps

such that for every ) # S C [n] and every v € Ag, we have that Hs|,,,; is a path between
Kg and Kg in Embg(I).
Proof of Theorem 3.2.6. We prove the cases n = 1 and n > 2 independently. For n = 1,

the clasper C of degree 1 consists of two leaves connected by an edge. By Proposition 2.2.14,
we can find a knot K € K which is equivalent to K¢, such that K and K are equal
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outside Jy (See Figure 19 for a visualisation.). Note that K(Jy) Ua p K (Jy) bounds an
embedded disk D in R? x D!, which intersects K (.J;) transversally once and is disjoint from

(KIQ)UKD)\ (K(Jo) UK (Jy) UK(J;)). Thus we can define an isotopy H: Jo x I — D

between K|;, and K|, relative endpoints.

FI1GURE 19. Clasper surgery of along C.

Thus we define a path H; between n;(I)(K) and n;(I)(K) via the following natural
transformation, cf. Remark 3.2.8.

Hi: A—Q[l] xI— Emb_gm (I)

Hylpoy: t = Ko}
H1|{0}2 t — K{O}
Hilgy: (pt,t) = ig(=,1)

where i is defined as
ig: (I\J;) xI—R*xD!
@J%+{K@> if p & Jo

~

H(p,t) otherwise

One can easily check that the Hy € Nat(A_cpj, Emb_cp).

Now we prove the case n > 2. So K (Jo)Ua s [?(JO) bounds a capped grope (G¢,{D;}" ;)
of degree n, as in Theorem 3.2.7. We apply Lemma 2.3.19 to this capped grope G¢ and
thus obtain a A" !-family of embedded disks

hy,: D* x A™! 5 R? x D,
satisfying the following conditions.
i) The map h,(— x {v}) is an embedding, for every v € A"~L.
ii) We have h,(S! x {v}) = K(Jy) Uap K(Jy) for every v € A", Furthermore for

v,w e A" and p € S!, we have h,((p,v)) = hy((p, w)).
iii) Let v = (t1,ta,...,t,) € A" 1 and set S, .= {1 <i <n |t #0}. We have

ha(D? x {v}) C N(Gs,) U | ] N(D,).
SESy
where G, is the subgrope of GG, corresponding to the subtree 'y, of I, , cf. No-

tation 2.3.9.
Since we have by construction

Gy 0 <K(I) U f((l)) - (K(JO) Unsp I?(JO)) u J Din k().

1<i<n
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we can refine’® N(Gg) and N(C;) so that for every S C {1,2,...,n} and 1 <i < n we see
N(Gs) N (K (1) UA(1) = K (Jo) UK (o),
N(C) N (K1) uA(D) C K(J).
This way, h,(D? x {v}) is an embedded disc in D3, bounded by K(Jy) Uap K(Jo).
In particular, h, (D? x {v}) N <K(I) U I?(I)) C (K(JO) Ua.p I?(JO)> UUies, 7(Ji). Each

h,(D* x {v}) (essentially) is an isotopy relative endpoints between K (.Jy) and K (Jp).
However, to define H,, a path between 7, (I)(K) and 7, (I)(K), we need the isotopies to
vary continuously as v varies in A",

For e = (1,0,...,0) € A""' we fix an isotopy H.: Jy x I — h,(D? x {e}) relative
endpoints between K (Jy) and K (Jp). For any other v € A™! we can define an isotopy
H, by mapping h,(D? x {v}) homeomorphically to h,(D? x {e}) via h,, and pull back the
isotopy H.. More concretely, the following diagram commutes.

Jox 1 — 4 p (D2 x {v})

He

ha(D? x {e})
Therefore we can define H,, as the natural transformation
Hy: Acpy x T = Emb_cpy(I)
Hploes:  (v,t)  — Ks
Hylogs:  (v,t) = in, (1),
where iy, : (I\ Uieg, /i) X I = R? x D! C R? is defined by

’ H,(p,t) otherwise

4. HOMOTOPY SPECTRAL SEQUENCE FOR SPACE OF LONG KNOTS

Goodwillie observed that the collection of good functors on Openy (I) is in one to one
correspondence with cosimplicial objects in the category of compactly generated weakly
Hausdorff spaces, cf. [GKWO01, Section 5]. We will give details for this correspondence
in Section 4.1. To the cosimplicial space Emb, (Construction 4.1.11) corresponding to
the functor Emb(—), we can associate the Bousfield-Kan homotopy spectral sequence
{E,,}q > p > 0 with integral coefficients. In Section 4.2, we will briefly introduce the
construction of this spectral sequence, show concrete computation of the d'-differentials
that maps in to the diagonal and give a combinatorial interpretation to these differentials.
From the combinatorial interpretation we will see that this spectral sequence relates closely
to the theory of Vassiliev invariants.

4.1. A cosimplicial model for the Taylor tower of Emb(—). In this section we
will give details for the correspondence (Construction 4.1.20) between good functors on
Openg (I) and cosimplicial objects in CGH. This correspondence facilitates further
computations in Section 4.2.3.

The part of this section after Construction 4.1.11 is a digression, and not necessary for
our discussion in Section 4.2.

MEor example by scaling the length of the normal vectors, cf. Notation 2.3.9
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Definition 4.1.1. We define the following two categories.
i) The simplicial index category A consists of the objects [n] = {0,1,...,n} C N
with n > 0, and the morphisms are the order-preserving maps.
ii) Denote by A, the category of finite, totally ordered sets. The morphisms are
order-preserving maps.

Remark 4.1.2. The simplicial index category A is equivalent to the category of non-empty
finite totally ordered sets, which we also denote, by abuse of notation, by A

Definition 4.1.3.
i) A cosimplicial space is a functor X,: A — CGH.
il) An augmented cosimplicial space Y, is a functor Y,: A, — CGH.

Notation 4.1.4. Let X, be a cosimplicial space. Denote by X} the value X,([k]), for
k> 0.

Notation 4.1.5. By restricting an augmented cosimplicial space Y, to the subcategory
A C A, we obtain the associated cosimplicial space, which we also write, by abuse of
notation, as Y,.

Convention 4.1.6. By totalisation Tot X, of a cosimplicial space X, we always mean

the totalisation Tot )z of a fibrant replacement )?: of X,, for the model structure, see
[BK72, Section X.4.6]. Similarly by n-th partial totalisation Tot™ X, of X, we always mean

Tot™ X,.
Remark 4.1.7 ([BK72, Chapter XI.4.4]). We have
Tot X, ~ holim )Z
Tot™ X, ~ h]?%ign 3(\;

Definition 4.1.8. Let Open, (I);, be the full subcategory of Open, (I) whose objects
are the open subsets of I that contain 0l and have only finitely many path connected
components, i.e.

Ob (Open, (I)g,) = {1} U | J Ob (Openj (1))

n>0

Proposition 4.1.9 ([GKWO01, Section 5]). A good functor on Openy (1) is determined

up to weak homotopy equivalence by its restriction on Openy (I)gh.

Proof. This follows directly from the definition of good functor, cf. Definition 3.1.3.ii). O

Proposition 4.1.10. The restriction of a good functor on Open, (I)°® to Open, (I)e" is
1sotopy invariant in the sense of Definition 3.1.35. O

Construction 4.1.11 ([GKWO01, Section 5|). Let x: Openy (I)i> — A be the functor
V= m(I\ V). Denote by €mb, the homotopy right Kan extension of the functor Emb(—)
along k.

Open, (I)g, —— A,
Emb(-)| —

CGH

Thus Emb, is an augmented cosimplicial space. Furthermore its associated cosimplicial
space has the following properties:
i) For V € Open, (I)g>, we have that Emby,mv) ~ Emb(V).
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ii) We have Tot" &mb, ~ T,, Emb(I) and Tot Emb, ~ holim,,>o T,, Emb(I).

To look into the technical details of the construction, let us begin with introducing
several categories.

Definition 4.1.12.

i) Define the category Man,, of smooth oriented m-dimensional manifold. Objects
of Man,, are the smooth oriented manifolds of dimension m, and the morphisms
are the orientation-preserving smooth embeddings.

ii) Define the topological category Many, i of smooth oriented m-dimensional mani-
fold. This category has the same objects as Man,,, and the morphisms are spaces
of orientation-preserving smooth embeddings.

iii) Define the full topological subcategory Disc,, of Man,, whose objects are finite
disjoint unions of R™ and Ry x R™™1.

iv) Define the full subcategory Disc,, of Man,, that has the same object as Discyy,.

v) Let M be a smooth oriented manifold of dimension m. Define the category

Discy, v = Disc,, x Many, i,
Man,,

where Man,, \; is the over category over M. Objects of Disc,,/\ are embeddings
of finite disjoint unions of R™ and R>¢ x R™™! into M.

vi) Let M be a smooth oriented manifold of dimension m. Define the topological
category

Discyv = Disc, X Mang i,
Many,

where Man,, \; is the over category over M.

vii) Let M be a smooth oriented manifold of dimension m. Define the subcategory
Isot,, v of Disc,, /v which has the same objects as Discy, /v, but keeps only the
morphisms that are isotopy equivalences.

Remark 4.1.13. Note that we can always view ordinary category as topological category
by considering the morphism set as discrete morphism spaces.

Proposition 4.1.14 ([AF15, Proposition 2.19|). The canonical functor
Discy,ym — Discmm
imduces an equivalence of topological categories
Discy m [Isot;}M] ~ DiSCin /M,
where Discm/M[Isot;}M] is the (Dwyer-Kan) localisation, cf. [DK80], of Discyu at

Isot,, /-

Remark 4.1.15. In [AF15], the authors used the language of co-categories (quasi-categories).
For a translation between topological categories, simplicial categories and co-categories,
see |Lur09, Section 1.1.3, 1.1.4 and 1.1.5].

For our application, we consider m =1 and M = 1.

Definition 4.1.16. Define the subcategory Disc‘?/I of Disc?/I whose objects are the
embeddings such that the boundary Ol of I is in the image.

In the same way, let Isot‘f/I be the subcategory of Isot;;; whose objects are the
embeddings such that JI is in their images.

Explicitly, objects of Disc?/I are embeddings of the form

1 " 3
Hul IRUE 11 .
[0,4) J;! (47]%, neN
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Using the same proof strategy as Proposition 4.1.14, we have
Corollary 4.1.17. The canonical functor Disc?/I — Disc?/I induces an equivalence of
topological categories
Disc? ), [(Isot?ﬂ)_l} ~ Disc));. O
Proposition 4.1.18.
i) ([AF15, Lemma 3.11]) The functor
S (DiSC?/I)Op — A+
(1: V1) m(l\i(V))
15 an equivalence of topological categories.
i) The functor Im: Disc?/I — Openy (), (i: V = 1) — im(i) is an equivalence
of ordinary categories. Furthermore Im|150t?I : Iso?/l — Isot(I) is an equivalence,
where Isot(I) is the subcategory of Openy (I),, which has the same objects as

Openy (1), , but keeps only the morphisms that are isotopy equivalences.

Proof. i) See [AF15, Lemma 3.11].

ii) First Im is essentially surjective, because the boundary of I is in the image of i
for any i € Isot?ﬂ. For any two objects i: V} — I and i9: Vo — Iin Disc?/l, the
morphism set MorDisc?ﬂ(il, ia) is either empty or a one element set. Also the morphism set
Moropen, (1) (im(i1), im(iz)) is either empty or has one element. Thus I is fully faithful.
Similarly it follows that [ m|15°t‘?/1 is an equivalence. 0

Corollary 4.1.19. We have the following equivalences of topological categories
Openy (1), [Iso(I) '] ~ Disc‘la/I [(Isot‘f/l)fl} ~ Disc?/I 2 AP, O

Construction 4.1.20. Let F': Openy (I);> — CGH be an isotopy invariant functor. By
the universal property of localisation, F factors through Openy (I); [Iso(I)~'], say the
factorisation is called Fj,.. From the chain of equivalences in Corollary 4.1.19, we get the
following diagram

Open, ()" —L 5 Open, (Dg, Mso(I)Hr —— (Discy,)® ——= Ay

CGH

where L is the localisation functor, and F and . are induced by the equivalences of
categories. Note that §, is an augmented cosimplicial space.

Denote by x: Openy (I);? — A, the composition of the horizontal functors in the
diagram above. Using Proposition 4.1.18, we see that x(V') = mo(I\ V). Thus we get

Snoav) = F(V),
for any V' € Open, (I)".

n
Conversely, given an augmented cosimplicial space Y,, we obtain an isotopy invariant

functor by precomposition with .

Proposition 4.1.21 ([GKWO01, Section 5|). The n-th partial totalisation Tot" Fe of is
weakly homotopy equivalent to T, F (1) for n > 0, and thus TotFe is weakly homotopy
equivalent to holim,,>o T, F'(I).
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Proof. We have Tot" §, = holimwA < Se = holimp open (1)) Floc = holimopenz ) F- The
first equality is by definition. The second weak homotopy equivalence comes from the
equivalences of categories from Corollary 4.1.19, and one can validate the third weak
homotopy equivalence by checking that L is homotopy initial. U

Corollary 4.1.22. Apply Construction 4.1.20 and Proposition 4.1.21 to the embedding
functor Emb(—) from Notation 3.2.1, we obtain a (augmented) cosimplicial space Emb,
satisfying Construction 4.1.11.1)—ii).

4.2. A integral homotopy spectral sequence for &mb,. To the cosimplicial space
Emb,, we can associate the Bousfield-Kan homotopy spectral sequence {E, ,;}4>p>0 With
integral coefficients, cf. [BK72, Chapter X]. The diagonal and anti-diagonal of the first

page, as well as the differential d': E, |, ' — E} . have combinatorial interpretations in

terms of unitrivalent graphs. The unitrivalent graphs we will encounter are closely related
to Vassiliev invariants [Bar95; Con08; CT04b|.

4.2.1. A spectral sequence for cosimplicial spaces. We begin by introducing techniques
that we need for the computation of Bousfield-Kan spectral sequences.

Notation 4.2.1. Let X,: A — CGH be a cosimplicial space. For 0 < i < n, denote by
8t X1 — X7 jts coface maps and s': X[+ — X its codegeneracy maps.
Given a cosimplicial space Xo,: A — CGH, there is a tower of fibrations (cf. [BK72,
Chapter 6, Section 6.1])
-oo = Tot"™ X, — Tot" X, — --- — Tot' X, — Tot’ X,. (4.2.1)

Denote by L™t X, the homotopy fibre of Tot™ ! X, — Tot™ X, and L°X, = Tot’ X,.
Thus by applying Bousfield-Kan homotopy spectral sequence, [BK72, Section X.6], to
the tower of fibrations (4.2.1), we obtain a spectral sequence calculating the homotopy
groups of Tot X,, whose first page is given by
E;,q = ﬂ-q—P(LpX')v
where ¢ > p > 0.

With the help of the cosimplicial structure, we can calculate 7, (L” X,) and the differential
d' in terms of m, (X)),

Proposition 4.2.2 ([BK72, Section X.6.2|). Given a cosimplicial space Xo: A — CGH,
we have

p—1 p—1
Te—p(LPXe) = 7 (X[p] N m ker(si)> =, (XP) N m ker(s}),
i=0 i=0
where the push-forward st : w,(X?) — ,(XP~Y) is induced by the codegeneracy maps s

on X!

Proposition 4.2.3 (|[BK72, Chapter X, 7|). Given a cosimplicial space X,, we obtain the
Bousfield—-Kan homotopy spectral sequence whose first page is given by

p—1
E) 2 my(XP) N () ker(sl),
1=0

where ¢ > p > 0, and the push-forward s.: m,(XP) — 7, (XP~Y) is induced by the
codegeneracy maps s' on X1, The differential d*: E;ﬂq — E;1>+1,q on the first page is given

by
p+1

where the push-forward 6°: 7,(XP)) — 7, (XY is induced by the coface maps 6 on XL,
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4.2.2. Homotopy groups of Conf,(R? x D!). From Section 4.2.1 we see that we need to
compute the homotopy groups of &mb,, for n > 0, in order to do some computation of the
Bousfield-Kan spectral sequence for the cosimplicial space &mb,. By Construction 4.1.11
we know that &mb, relates closely to configuration spaces of R? x D!. Therefore let us
gather some information about the homotopy groups of the configurations space in this
section.

Definition 4.2.4. Let M be a smooth manifold (possibly with boundary). Define the
configuration space Conf, (M) of n > 1 points on M as

Conf, (M) = {(z1,...,2,) € (M \OM)" | z; # x; for i # j}.
Now we focus on Conf, (R? x D) for n > 0.
Convention 4.2.5. We define'® Conf,(R? x D) := {(0,0,—1),(0,0,1)} € 9(R? x D?).

Situation 4.2.6. Let us fix the following points of R? x D!. Define e := (1,0,0) € R? x D!,
and ¢; == (0,0,0), and ¢ = ¢; + 4(k — 1)e for k > 1 Also define the set of points Qo == 0
and Qk: = {Qh q2, - - . 7%}

Theorem 4.2.7 (|[FN62, Theorem 2|). Forn > 2 and n > k > 0, the map
pry.,,: Conf,(R* x D'\ Q) = R* x D'\ Q4
(x17$27 e 7$n> = I

is a fibre bundle whose fibre is homeomorphic to Conf,_{(R? x D'\ Qu,1). For k >0, the

map pry,, admits a cross section'®.

Thus we can compute 7,(Conf,(R? x D!)) inductively via the splitting long exact
sequences for the fibre bundles DTk, for 0 < k <nandn > 2. And we can conclude the
following corollary.

Corollary 4.2.8 (|[FN62, Corollary 2.1]). Forn > 2, we have

n—1 n—1
mi(Conf, (R? x D)) = @ m(R* x D'\ Qx) = P mi(VE_,S?).
k=0 k=1

In particular, Conf,(R* x D) is simply connected.

Now we are going to introduce a set of generators for my(Conf, (R? x D)), which we
will use in the computations in Section 4.2.3.

Definition 4.2.9. For 1 <i,j <n and i > j, define the map x;; as the composition of
the following two maps

S2 — COnfn_j+1(R2 X Dl \ Qj—l)
T (qi+I7Qj7"'7QTL+1)7

and
Confn_j+1(R2 X [)1 \ Qj—l) — COIlfn(IR2 X Dl)
(@1, Tng) = (- G, Ty T jg1)-

Proposition 4.2.10. The maps z;;: S* — Conf,(R* x D) for 1 < i < j < n generate
the group ms(Conf, (R? x D).

15We define this conventions because we will use in the next section that €mb,, ~ Conf,,(R?xD')x (S2)"
forn > 1.
16The case k = 0 works since we are looking at Euclidean spaces.
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Proof. The image S;; = im(z;;) of x;; is homeomorphic to a 2-sphere. For a fixed j
with 1 < j < n, the space Si; V Sa; V -+ V S;_1; C R? x D! is homotopy equivalent to
R? x D'\ Q;-1. Note that for every ¢ with 1 < i < j, the map z;; is the positive generator
of m5(S;;). Thus by the Seifert-van Kampen theorem, the maps z;; fori =1,...,j -1
generates the group ma(S1; V So; V-V Sj_1 ;) = m(R? x D'\ Q;-1). Now let j vary and
apply Corollary 4.2.8, we have that the maps z;; for 1 < i < j < n generate the group
7y(Conf, (R? x D1)). O

Remark 4.2.11. The proof provides a decomposition of m,(Conf,(R" x D)) as
W.(COHfH(RT X Dl)) = @W.(Slj VeV Sij VeV Sj*Lj)?
j=2

where for 1 < ¢ < j < n the positive generator of S;; is ;5. Thus by the following theorem
of Hilton about homotopy groups of wedges of spheres, we can compute all the homotopy
groups of Conf, (R? x D).

Definition 4.2.12 ([Hil55],[Whi78, Page 511-512]). Let T := S™*! v S22 v/ .../ §retl
and denote by ¢; the positive generator of S"*!. Note that ¢; can be considered as an
element of 7, 1 (T) via the canonical embedding S"*1 — T.17
i) The basic products of weight 1 are the elements ¢y, 19, -+ ,1x. We order the set
of basic products of weight 1 by 11 < 15 < --- < 1. We define basic products
of weight bigger than 1 recursively. A basic product of weight w is a Whitehead
product [a, b], where a and b are both basic products of weights o < w and f < w
respectively such that
a) a+ f =w and a < b, and
b) if b is defined as the Whitehead product [, d] of basic products ¢ and d, then
we have ¢ < a.
We declare every basic product of weight w to be greater than any basic product
of smaller weight. We order the set of basic products of weight w lexicographically,
i.e. for two basic products [a,b] and [a',V'] of weight w, we set [a,b] < [d/, V] if
a<a,ora=d and b<?.
ii) Thus a basic product p of weight w is a suitably bracketed word in the symbols ¢;
fori=1,... k. Assume ¢; appears w; times in p. We define the height A(p) of p

k
as Y .y Tiw;.

Theorem 4.2.13 (|[Whi78, Theorem 8.1]). Using the notation of Definition 4.2.12, let P
be the set of (formal) basic products of 1, ..., . We have

7T.(T) o @ﬂ_.(sh(l))—l—l).

peP

where the direct summand 7,(S"®)F1) is embedded in mo(T) by composition with the basic
product p € Tpp1(T).

The generator z;; for 1 <4,j < nand i # j of my(Conf,, (R? x D')) satisfy some relations,
which we will use in the computation in the Section 4.2.3.

Proposition 4.2.14 ([Hil55, Corollary 5.2, Theorem 5.3|). Let X be a topological space.
Then the Whitehead product [,] on me(X) is bilinear, antisymmetric and satisfies the Jacobi
identity, i.e. for a € ma41(X), B € mpy1(X) and v € mer1(X) we have

1"We consider basic products eventually as homotopy classes, but to get a well-defined definition, one
has to first define basic products as ‘formal’ products, cf. [Whi78, Page 511-512]. The index set P in
Theorem 4.2.13 below is then the set of formal basic products, and this ensures a posteriori that we do
not have to distinguish formal products and Whitehead products of homotopy classes.
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i) [, B+9] = o, Bl + [,7] and [ + B,7] = o, 7] + [8,7],
ii) [aaﬁ] = (- )““)(”“[ ,al, and
iii) (—1) ], [8,7] + (=1)*C VB, [y, a]] + (=1)"“ D[y, [a, 5] = 0.

Proposition 4.2.15 ([FHO1]). The elements x;; €C mo(Confy(R?* x D)) for 1 <i,j <n
and © # j satisfy the following relations:
i) xij = —j,
i) (w5, 0] = (240, ir] = [Tir, Ty], if 0 > 3;
i) [z, 20] =0, if {i, 7} N {l,m} =0 and n > 4.
4.2.3. A homotopy spectral sequence for the Taylor tower of Emb(—). Recall from Con-

struction 4.1.11 the cosimplicial space Emb® which by Construction 4.1.20 corresponds to
the embedding functor Emb(—) from Notation 3.2.1. We have by Construction 4.1.11 that

Emb,, ~ Emb(V) ~ Conf,(R*> x D) x ($?)", (4.2.2)

for any V € Openy, (I)g> such that mo(I\ V) = [n]. The S? components in the product
represent the tangent vectors at points of embeddings.

For the computation of the homotopy spectral sequence associated to Emb® we need to
compute the induced maps on homotopy groups of the face and codegeneracy maps. Recall
that m.(€mb,) = 7, (Conf, (R? x D)) x (m.(S?))". By abuse of notation, we consider z;;
for 1 <i < j <n elements of m,(Emb,,) under the natural inclusion.

Let | € Nand 0 < I < n. Recall the notations from Construction 4.1.11. Let
Vat1 € Openy (I),, be the object such that x(V,11) = [n + 1]. We obtain an object
Vo € Vi1 by removing the (I + 2)-th subinterval of V.1 \ 1. Then the degeneracy map
st for @mb* is the induced restriction map Emb(V,,,1) — Emb(V},), i.e. forgetting the
embedding of the (I 4 2)-th interval With respect to the homotopy equivalence 4.2.2; we
can write s' with 0 <[ < n concretely as

s': Conf, 1 (R* x D') x (S2)nJrl — Conf,(R* x D') x (8%)"
(l‘l,. .. 7xn+1) X (Ul, R 7Un+1) — (ZL‘l, R ,[E/H_\l,. .. 7xn+1) X (Ul, ce ,’U/Z-_E, ce ,’l)n+1),
Therefore, precomposing with the map from S? representing the generators x;;, we have

Proposition 4.2.16. Leti,j,llne€Nand 1 <i<j<n+1and0<[<n andn > 2.
i) We have

Ti—1,5-1 Zfl <1—1

Sl (l‘): Tij—1 Zfl—1<l<]—1
*A Ty ifl>j—1
0 otherwise

ii) Denote by s.(c): m.(Conf, 1) (R* x D')) — m,(Conf, (R? x D)) the restriction of
the map s\ on to the m,(Conf},;1(R? x D)) component.
Denote by Z the set of basic products of the elements x; ; that contain x, ;41 or
Tipip for 1 <u<landl+2 <v <n+1. Via the isomorphism in Theorem 4.2.185,
the kernel of the map sk(c) is isomorphic to @, , 7. (SMP) 1), for v > 2.
iii) Denote by st(t): (m,(S2)""" — (m,(S2))" the restriction of the map st on to the
(m,(S2))" " component.
For r > 2 , we have that s(t) is the canonical projection where one forgets the
I-th component. Thus the kernel of sL(t) is isomorphic to (0)" x m,(S2) x (0)"".

Proof. i) and iii) follows from the description of s right above the proposition.
For the proof of iii), let us abbreviate s'(c) by sl in this part of the proof. Note that
for n > 2, we have s (z,,) = 0 if and only if u =1+ 1 or v =+ 1. Thus for n > 2 and
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z € Z, we have sl(2) = 0 because of the naturality of the Whitehead product. Thus s’
factors through ,(Conf, (R* x D'))/@,., T (SPP) 4+ 1)

sl

7. (Conf, 1 (R?* x D))

> 7,(Conf,(R?* x D!))
y

_ -

m,(Conf,,(R? x D)) />7 o, m(SMP) + 1)

By inspecting the value of s, on z;;, we conclude that for two basic products w; < ws
with sl (wy) # 0 for k € {1,2}, we have 0 # s.(w;) < s'(ws). Also the height of w; and
st (wy) is the same.

Thus 5% sends a basis of m.(Conf,(R* x D1))/3 ., m(S"®*¥1) (i.e. basic products that
are not in Z) injectively to a basis of 7,(Conf,(R? x D!)). Thus 5\ is injective, which
implies that the kernel of s! is isomorphic to D, 7,(SMPF1) | via the isomorphism from
Theorem 4.2.13. 0

Similar analysis of the definition of the face maps tells us that the face map §' of Emb®
corresponds to “break” the embeddings of the (I + 1)-th interval into the embedding of
two subintervals. Therefore, one representative'® for the map §' with 0 < ! < n + 1 can be
the following:

Conf,(R* x D') x (8%)" — Conf,+;(R* x D') x (Sz)"Jrl

(1, ooy @) X (V1,00 ) > (T, 0o X, T F €U gy ooy @) X (V1,0 ooy UL UL Uity v ey Un)y
where the scalar € € R is so chosen that (z1,..., 2,2 + €v;, T4, ..., x,) is a well-defined
point in Conf,, 1 (R? x D'). For [ =0 and [ = n + 1, we have

O (21, ) X (V1. 0n)) = (o1 + €6, 1, .o, 20) X (6,01, ., 0p)

6" (1, -y wp) X (V1,00 oy 00) = (X1, oo, Ty Ty1 +€'€,) X (V1,0 ., 0, €),

where z_; = (0,0, —1) and ;1 = (0,0,1) and e = (0,0, 1).
Therefore, we can calculate explicitly that

Proposition 4.2.17. Leti,j,lln € Nandn>2and1 <1 <j<nand0 <[l <n+1.
i) Forn € N and n > 2, we have

(Zit111 ifl<i
Tijp1 + Tigr 1 f =1
L (zij) = @iy ifi<l<j.
Tij + Tijr1 ifl=7
(i) otherwise

ii) Denote by yr a generator for the k-th component m5(S?) of (mo(S?))™. We have that

Yk+1 ifl <k
SL(yk) =  Tppor Uk Fyrn ifl=Fk
Yk otherwise

O

Nowtwe can compute E;—l,p and E;p of the homotopy spectral sequence associated to
the cosimplicial space Emb°®.

18There is no natural homotopy equivalence between €mb,, and Conf,, (R? x D) x (S2)”
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Corollary 4.2.18. Let I,n,r € N andn > 2 and 0 < | < n and r > 2, and recall the

Sl
notations from Proposition 4.2.16. For the degeneracy map Emb™t = Emb", we have

ker s = ker s (¢) x ker s'(t) and
n—1 n—1
ﬂ ker s!, = ﬂ ker st (c) x (0)"
1=0 1=0

Proof. We have that s! = s (c) x s.(t). O

Proposition 4.2.19.

i) Forp>3and 1 <i<p-—1, let T be the set of basic products of the elements
Zip—1 of height p — 2, such that each x;,_1 appears exactly once. Let I be the set
of basic products of elements x;,_1 of height p — 1, such that one xy,_1 appears
exactly twice and all other z;,_; appear exactly once. Then we have

Ey 1, =2 @) e Pm(s) (4.2.3)

where 7,(SP~Y) and 7,(SP) are embedded in m,(Conf, ;(R* x D)) by composition
with the basic products in T and F' respectively.

ii) Forp > 2, let H be the set of basic products of height p — 1 of the elements in x;,
for1 <i < p—1 such that each x;, appears evactly once. Then

E), = @, (s, (4.2.4)
H

where the direct summands 7,(SP) are embedded in m,(Conf,(R* x D')) by compo-
sition with the basic products in H.

Proof. i) Recall from Proposition 4.2.3 that ) | = m,(Emb,_1)N P2 ker(sl). By Corol-
lary 4.2.18 we only need to consider the m,(Conf, ;(R? x D')) component of 7,(€mb,_;),
ie.

p—2
E?_| = m,(Conf, 1 (R” x D')) N () ker(sk(c)).
=0

Recall from Corollary 4.2.8 that
p—1
Wp(Confp,l(IW X Dl)) = @WP(SU V ng A\VARRERV] ijl,j)7

=2

and x;; is the positive generator of S;;, 1 <i < j < p— 1. For a fixed j, let {b,(cj)}keN be
the set of basic products of the elements z;; for i = 1,...,7 — 1. By Theorem 4.2.13 of
Hilton, we have
7,(Conf,_1(R” x D')) = @D, (8" +1).
1<j<p71
keN, h(bY))<p—1

(©)).
(©).

Next we need to examine which elements of m,(Conf,_;(R? x D)) lie in (] ker(s
By Proposition 4.2.17.iii), it is sufficient to see which basic products lie in ﬂf:_lz ker(s
Let us consider the following cases:

a) We have j # p — 1. In this case, we have s?~1(b)) 0.

b) We have j =p —1 and h(bl(cj)) < p — 3. In this case there exists at least one index

l
*
l
*

1 <4 < p—1 such that z;, ; does not appear in I),(g)7 and thus si‘l(b,(cj)) £ 0.



VASSILIEV INVARIANTS VIA MANIFOLD CALCULUS 39

c) We have j =p — 1 and h(b(j)) = p — 2. In this case each z;, ;1 with 1 <7 <p -2
appears in b/,(C exactly once. Thus for all 0 <1 < p — 2, we have s (b(J )) =0, since
st (z141p-1) =0 and xl+17p_1 appears in b,(C .

d) We have j =p—1 and h(b ' ) p — 1. In this case there exists an index 7 such
that x;, ,—1 appears exactly twice 1n bgj , and all other xzp twith1 <i<p—2
and i # zk appear exactly once in b . Asin ¢) we see s (b( )=0for0<I<p-2.

Thus (V-] ker(s’(c)), or E} is generated by basic products of the form in ¢) and d),

p—1,p>
which ylelds Equation 4.2.3).

ii) Similar as in i), we recall that E} = m,(Conf,(R* x D')) N P ker(sk(c)). Fur-
thermore (/—, ker(s.(c)) is generated by the basic products {b,(f )}keN of elements z;, with
1 <7< p-—1 such that h(b,gp)) =p—1, and for each i with 1 < i < p — 1, the element x;,
appears exactly once in bl(f ), O

With the description of E1 _,, and E;p in terms of elements z;; with 1 < i < j
and j = p—1or j = p, we a,re going to give an explicit formula for the differential
d-E, ,,—~E,,

Convention 4.2.20. Since the groups E, , , and E,  are isomorphic to subgroups of
m,(Conf,_; (R? x D)) and m,(Conf,(R? x D')) respectively, we only need to use d.(c) for
the calculation of the differential d', according to Proposition 4.2.3. In the remaining text,
abbreviate 0% (c) by dL.

Proposition 4.2.21.

i) The differential d*: Ezl, 1p = E[ip is trivial for p =1 and p = 3.

ii) For p =2, the differential d*: Ey 9 — Ey9 is an tsomorphism.
Proof. First we have
Ej, = mi(Emby) = 0, and
Eil = (Emby) = Wl(Confl(R2 X Dl)) X 7T1(SQ) =0.

Thus d*: Eé,1 — Eil is trivial.
For d': E} 3 — Ej 4, we apply Proposition 4.2.19 to see that

E213 = 7T3(SQ) = Zv

with generator z15. Thus

513'12 E 5 1‘12

= Zo3 — (T13 + Xa3) + (T12 + T13) — Z12
=0.

Therefore d': E} ; — E1 . is trivial.
As for d': Ej, — E;,, we have

E1172 = Wg(embl) = WQ(COHfl(Rz X Dl)) X WQ(SQ) = {0} X 7T2(S2)

with generator y; for the component 7(S?), and

1

Ej , 2 my(@mby) N[ sk = my(Confy(R* x D)) x {e} x {e},

=0
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with generator 1, for the component my(Confy(R?xD1)). Apply the formula in Proposition
4.2.3, we have

d'(y1) = Z5i(y1)

=Y — (T12+ Y1 +v2) + 11
= T12-

Therefore, d': E], — Ej, is an isomorphism. U

Now let us consider d': E}_, , — E! . for p > 4. According to Proposition 4.2.19 we
have for p > 4,

B, =P e Pm(s)
T F
~(Pzrze Pz
T F
E,,~@Pr(s") =P
H H

Since E} , is torsion free, we see that d' is trivial on @, 7,(SP~"), and we conclude that
we only need to consider the restriction of d* to @ m,(SP).

Notation 4.2.22. We denote the torsion-free part of E} , by E) | /tors, ie. the
summand €@, 7,(S?) in Equation 4.2.3.

Proposition 4.2.23. For p > 4, denoted by D the set of Whitehead products of the
elements x;,—1 fori=1,...,p — 2 with the following properties:

i) For every w € DJP, there exists one Tyw)p—1 that appears exactly twice and all
other x;,—1 with 1 <i <p—2 and i # k(w) appear exactly once.

ii) Every w € Dy is of the form w = [c1,cp] where ¢y is an iterated Whitehead
product of elements x;,_1 with i € I and cy is an iterated Whitehead product of
elements x;,—1 with j € J such that I,J C {1,...,p—2}, INJ = {k(w)} and
TuJ={1,2,...,p—2}.

Then, E! | /tors is generated by elements of DiP.

p—1l,p

Proof. Denote by D, the set of iterated Whitehead products of the elements z;,_; with
i=1,...,p— 2 satisfying only condition i). Using the same argument as in the proof of
Proposition 4.2.19, we see that D5 C E} | and D, C E} , . In particular, the basic
products in F', which are a basis of E;—Lp /tors, are contained in D,,. We have reduced the
desired statement to the following claim which we prove by induction.

Claim. Forp > 4, any element of D, can be written as a linear combination of elements
of DyP using only the Jacobi identity and antisymmetry relations (cf. Proposition 4.2.14).

For p = 4, the claim follows by listing all the elements of D, and using the Jacobi
identity of the Whitehead product.

Assume that the claim is true for all p < n with n > 4. Let p = n + 1 and consider
w = [ay1,as] € D,11. Without loss of generality, we can assume that 1, is the repeated
element in w. If the two copies of x; ,, appear in a; and ay separately, then w is already an
element of D;*P. Otherwise, both copies of z;, appear in either a; or ag, say they appear
in a;. By assumption a; is a Whitehead product of elements z,,,,m € M with 1 € M,
#M <n — 2, and for m # 1, the z,,,, appears exactly once in a;.

There is a bijection r: {z,,, |m € M} = {x; 4p41 | i =1,...,#M} such that x,, is
mapped to 1 uy41. Define a) € Dupyo by replacing each occurrence of z,,, in a; by
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7(Tp5). By the induction assumption, we can write @} as the finite sum a} = ./ [cj;, ¢jy]
such that [c};, cjo] € Dy}, and 1 4a41 appears exactly twice in [c;, cip]. Thus, by
replacing each x; gar1 by 771 (2 gar1) we obtain a; = Y., [ci1, ¢io] such that [c;1, ¢0] is
a Whitehead product of the elements z,,, with m € M, where z,, appears exactly twice
and z,,, appears exactly once for m # 1.

Therefore w can be written as

w = Z [[Cﬂ, Cial, CLQ}
= Z(—l)q Hcilv as), Cm] + (=)= [[ag, ciol, cﬂ},

where €; and €5 denote the signs which come from the Jacobi identity for the Whitehead

product. For every ¢ € I, we have that [[c;1, as], cio|, [[an, cio], ci1] € Dy}, Thus w is a
linear combination of elements of DJP. U
The upshot is that it is sufficient, for the computation d': E} , , — E, , to compute

d'(w) for every w € D5,

Proposition 4.2.24. Let w = [c, co] € DP, say with repeated occurrence of xy, 1. We
write’ ¢, and ¢y as ¢y = [ Tip 1. Tpp1...] and co = [ Tpp1... Tjp1...]. The

index k will be fixed through out the proposition. Then we have
d"(w) = 0%(w) + 0P H(w),

where
ak(w) = (—1)k [[ e Xirp e Tkp - - .], [ o LTky1p---Tj'p-- H
+(_1)k[['"xi’,p"'mk-l—l,p”'L["'xk,p"-xj’,p-"]]
and
P w)= (1P @ipo1 e Topet L [ Thp e T
+(—1)p71[[...J,’i’p...%k,p...],[...l’k,p_l...Ij7p_1...H,

where i =i ifi <k andi' =i+ 1ifi>kandi =i ifi<k andi =i+ 1 ifi>k.
Before we prove the proposition, let us take a look at an example of computation of d'.
Example 4.2.25. Let k =2 and p = 8 and w € D5 of the form
w = H[x377 Tor], Ts7], [[T17, Tar], [Ta7, Ter]] ]
Now let us calculate d*(w) using the formulas in Proposition 4.2.24. We have
32(?0) = [ HMS, fzs], 5E68] ) [[90187 $38], [%8, $78H ] + [[[Ms, 9038], $68] ) [[ils, I28]7 [I58, 3378“ },
and
87(w) = - [ H$37, 9027]7 I57] ) [[$187 1’28], [1’487 $68H ] - [[[I?,s, 1728], 3058] ) [[9517, 9527]7 [9547, 9567“ }

Proof of Proposition 4.2.2/4. First we proof the proposition for £ < p — 3.

Claim 1. Forl # k,p — 1,p, each of the elements (—1)"15" (w), (=1)'L(w) and
(—1)*155 1 (w) can be written canonically as a sum of two iterated Whitehead products of
z;, with 1 <4 < p such that every summand of (—1)'6%(w) appears in (—1)""26"1(w) or
(—1)#15+ (w) with opposite sign.

19By abuse of notation we hide the inner brackets of iterated Whitehead products when we write an
elements as done here.
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We note first that 6" (z;,) = 0%(24,) = 6L (w4,) for i #£ 1 — 1,1 and | + 1. Moreover,

(V(ilj‘)z Tit1,ps ifi>1+1
e T, ifi<l—1

forr=101—1,land [+ 1.

Without loss of generality, we write w = [... 211 ... Zj—1p-1---Ti41p-1- .-, Where we
show only the elements that are interesting for us. Note that in this presentation of w,
the order in which the elements z;,_1,2;-1 ,—1 and x;41,-1 appear does not play a role.
We calculate 62 (w) for r =1—1,l and [ + 1:

(Si_l(U)) = [ o Li41p - Ti—1p + Tip-- - Ti+2p - - ]
0

I+
o,

w)=[...Tp+Tit1p.- - Ti1p---Titap-- -]

(
(w)

l
*
1

[. e Xpp e Tp—1p - Ti41p + Ti42,p - - ]

Thus we see that [... 251, T1—1p .- Tisap ... | of 6L(w) appears in 6.1 (w) and the
term [... T, .. . T 1p... Tiya, .- -] of OL(w) appears in 6! (w). Since the signs in front of
8",r=1—1,land [ + 1 in d* are alternating, we see that in d*(w) the terms of (—1)'d%(c)
are cancelled by terms of (—1)""15"(w) and (—1)"*165+ (w) as desired.

Claim 2. Forl =k, after cancelling terms of (—1)*6%(w) by terms of (—1)F~16* " (w)
and (—1)*155 1 (w) as in Claim 1., the remaining terms of (—1)k6%(w) is 0% (w).

For convenience of the proof, we write without loss of generality

w = [ - Tekp—1-+-Tk—1p-1---Tkp-1---LThkt1lp—1--- ]

Again note that for i # k — 1,k, k + 1, we have 6" 1(z;,_1) = 6%(x; 1) = 0¥ (2, 1),
and note

55?_1(110 = [ o LTkt1p - Th—1p + Tkp- o Thtlp--  Th42p - - ]
k) =1.. Thp+ Tt Tholp- - Thp + Thtlp--- Thiap - - -]
5f+1(w) = [ o ZTkp-- - Thk=1p---Thkp---Tktlp + Tkt2p - - ]

Thus after cancelling with terms of §*~!(w) and 6**!(w), the remaining term of 6*(w) is

(=1 Tkl - The1p - Thtlp - Thp2p-- -]
+ (—1)’“[. Tt 1p Tkl Thp .o Tht2p - -]
Writing w as w = [c1, ¢ = [[.. - Tim - - Thn - - |, [- - Thn - - - Tjrpn - . . ]|, the remaining terms
of §%(w) look like
(D [ ozip e @hpe L [ T Ty -]
+ (D[ @ip e Thrp L L Thp Ty ]

which we recognise as 9% (w) as desired.

Claim 3. After cancelling with terms of (—1)?72627?(w) and (—1)P6?(w), the remaining
term of (—1)P~16P~H(w) is OP~H(w).

In order to prove this claim, we write w = [c1, ¢2| as in Proposition 4.2.24. Note that
6PN (@i p_1) = Xip-1 + Tip, 50 we have

0 (w) = [077 (1), 027 (c2)]
= H - Tip—1 + Tip-o Thp-1 + Tkp--- ], [ < LTlp—1 + Llp - - Ljp—1 + Tjp--- H .

Recall that by assumption ¢; and ¢, are iterated Whitehead products of the elements
Tip—1 with i € I and x;, 1 with j € J where [, J C{1,...,p—2}and I NJ = {k} and
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TuJ =A{1,...,p—2}. Furthermore, each z;, 1 with ¢ € I appears exactly once in ¢; and
similarly each x;,_; with j € J appears exactly once in c;.

Recall that E} , /tors is a subgroup of m,(€mb,_;) = m,(Conf,_,(R* x D')). For
w € m,(Conf,_ 1(R2 x D)), which has the form [...[z;p-1 + Zip, Tjp-1+ xj,) . ..] With
i # 7, we have by Proposition 4.2.15 the following equality

[. .. [Iz’,p—l + Lipy Ljp—1 + xjm] .. ] = [ .. [xz',p—h Ij,p—l] .. ] + [ .. ['ri,]n xj,p] . ] .

Thus by induction on the number of brackets the brackets, we have

5571(01) = [...$i7p,1...xk7p,1...]+[...$i,p...$k7p...]

(5571(02) = [ o Tkp-1---Tjp-1-- ] + [ T - x],p]
and thus

519 1 -$i,p—1-~~$k7p—1---]7[-“:Bhp—l---xj,p—l-“]]
i Thp )y [ T Ty ]
.:vl-7p_1...xk,p_l...],[...xk,p...xm...]}

-xz’,p”'xk,p-w]a[H'xk,p—l---xj,p—lw'u‘

[[--
[l
[l
I

+ o+ +

Let us now look at ?=2(w) and 67(w). We have

P (w) = U---ifz'k---iﬂk,p—l---],[---ffk,p—l---%,p—l---H-

Assume without loss of generality that x, 5,1 appears in ¢;, and write ¢, of the
form ¢y =[...@ip1 .. Tpp_1.. . Tp_op1...]. We get

P2w) = [[. . Tip o Thp o Tpzp+ Tpo1p. | [ Thpe e Ty .. ]]
=l @ip. @hp Tpoap. | [ Thp Ty

+ [ Tip e Thp e Tpoip [ Ty T ]

Thus after cancelling with the terms of (—1)P726?~%(w) and (—1)?§?(w), the remaining
term of (—1)P~16P~ 1 (w) is

(0P L@t Tt e T T

+(_1)p_1[[‘uxi,pu'mk,p'--];[-uxk,p—lH-Ij,p—1~~H7

which is exactly 9P~!(w) as desired.

Finally one can proof Claim 1 for £ = p — 2 analogously. Then we can explicitly
write down 0% (w) for r =p — 3,p—2,p — 1 and p and obtain the desired formula in the
proposition. [

Remark 4.2.26. Note that in the calculations of the proof we only changed the indices of
x;p—1 for i =1,...,p—2, but the bracketing of ¢; and ¢, was not changed at all. More ex-
plicitly, the expressions [[...Zip.. Tkp--. ], [+ Thg1p.--Tjrp-..]] in the formula of 9%(w)
and [[...@ip-1.  Thp1---],[ - Thp---Tjp...]] in the formula of ! (w) have the same
bracketing as the one of ¢;. The expressions [[... Ty p.. . Thi1p--- |, [ o Thp---Tjrp...]] In
OF(w)and [[...@ip. .. Thp--- |, |- Thp1.--Tjp_1-..]] in O~ (w) have the same bracket-
ing as co. Note that the bracketing determines the shape of the unitrivalent graphs in the
combinatorial interpretation in the next section.
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4.2.4. Combinatorial intepretation. In this section, we will give a combinatorial interpreta-
tion of Proposition 4.2.19 and Proposition 4.2.24.

Definition 4.2.27. A unitrivalent graph I is a graph whose nodes have only degree 1 or 3,
together with a cyclic order on the edges at each node. We call the nodes of degree 1
leaves and nodes of degree 3 trivalent node. When I" has n leaves, we define a labelling (or
total ordering) on I" to be a bijection of the set {1,2,...,n} to the set of leaves. Denote
by UTG the set of labelled unitrivalent graphs. We define the degree I" as the number of
nodes divided by 2.

When we draw a labelled unitrivalent graph, we place the leaves on a oriented line,
ordered according to the labelling. Unless explicitly mentioned, the cyclic orders of the
trivalent nodes are counterclockwise. See Figure 20 for an example of labelled unitrivalent
graphs.

1 2 34 5 67 8
FIGURE 20. A unitrivalent tree of degree 4.
Definition 4.2.28. We define the following relations on Z[UTG]:

i) Two labelled unitrivalent graphs Iy and —I% are AS-related if I and I are the
same up to the cyclic order at one node. This is depicted in Figure 21.

N ) ~

FIGURE 21. A visualisation of the AS-relation.

ii) Let I" be a labelled unitrivalent graph. Let e be an edge in I" between two trivalent
nodes v and w. Then I is IHX-related to the difference I — I'" of the following two
labelled unitrivalent graphs " and I'”. Let {e, €€} be the ordered set of edges at

/ "

the node v, i.e. we have e < €], < e/ (cyclic order). In the same way, let {e, €, el

be the ordered set of edges at the node w. The graph I arise from I" by deleting

the edge e and the nodes v and w of I, and adding an edge ¢’ and two trivalent

nodes v’ and w’ such that the ordered set of edges at v" are {€/, e’ ¢! } and the
" /

ordered set of edges at w" are {¢/, e/ e/ }. The unitrivalent graph I'” is constructed
similar to I'". For I'” the ordered set of edges at the nodes v’ is {¢/ < €] < €}

and at the nodes w' is {€’ < ¢!l < e/}. This is depicted in Figure 22.

Definition 4.2.29. Denote by UTT, the set of labelled unitrivalent trees of degree p.
Define 7, as the abelian group generated by UTT, modulo AS- and IHX-relations, i.e.

Ty = Z[UTT,] /~as, ~mx -



VASSILIEV INVARIANTS VIA MANIFOLD CALCULUS 45

N

FIGURE 22. A visualisation of the IHX-relation.

Construction 4.2.30. For p > 2, denote by T, the set of iterated Whitehead products
of the elements z;, with 1 < i < p such that x;, appears at most once in a given iterated
Whitehead product. We are going to construct a one-to-one correspondence

labelled unitrivalent tree of degree at most p — 1
Y : o . .
T, = { together with a monotone bijection of their labelling

?7 | with a subset of {1,...,p} containing p

Define the length of 7 € T}, to be the total number of occurrences of x;,, ¢ =1,...,pin
7. We will define ¥r inductively on the length n of 7. Define ¥r(z;,) to be the degree 1
labelled unitrivalent tree consisting of two nodes labelled by ¢ and p and an edge connecting
them. Assume that for all 7, € T, of length k at most n — 1 < p, we have that ¥r(7) is a
degree k — 1 unitrivalent tree with labelling L, = {i € N | 2, appears in 7.} U {p}. For
7, = [7',7"] € T, of length n, we know that 7" and 7" are elements of 7, and of length
smaller than n. By induction hypothesis, both I .= Wy (7') and " := ¥r(7") have a leaf
with label p. We define the labelled unitrivalent tree ¥ (7,) to be the tree that arises by
joining the tree I"" and I'” at the respective leaves labelled by p, and joining to this joint
point a new leaf labelled by p. The set of labels of ¥r(7,) is L, U L,». This construction
is depicted in Figure 23, where also the cyclic order at the joint node is indicated.

V W
NS
p p

FIGURE 23. Unitrivalent trees I, I'”, and the unitrivalent tree obtained
from I"" and I'” by joining their leaves labelled by p.

p

Now we proceed to define the inverse map @r. For a labelled unitrivalent tree I of
degree 1 with the set of labellings {i,p}, set @1 (I1) = z;,. Assume that we have already
defined @1 for unitrivalent trees of degree smaller than n < p — 1. Every unitrivalent tree
I, of degree n can be depicted as in Figure 23. Then define @1 (I,) = [@r(I"), D7 ()],
where I and I'” are the trees depicted in Figure 23. By construction, the two maps ¥r
and @ are inverse to each other.

Proposition 4.2.31. Recall the group E;p = P, Z from Proposition 4.2.19. Forp > 2,
the construction above induces an isomorphism E;’p = T,_1 of groups.

Lemma 4.2.32. Let J, C T, be the set of iterated Whitehead products of the elements
Tip, = 1,...,p—1 such that z;, appears exactly once in the iterated Whitehead product.
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Then we have
Ezl),p = Z[‘]p]/Na
where ~ denotes the antisymmetry and Jacobi identity relations from Proposition 4.2.1}.

Proof. Recall H from Proposition 4.2.19, and note that H C J, C E;’p. Thus any element
of J, \ H can be written as linear combination of elements of H. Furthermore, this linear
combination is produced by applying the Jacobi identity and antisymmetry relation to

the element, cf. [Hal50, Theorem 3.1]. Thus we obtain the desired a group isomorphism
B, = L[]/~ O

Proof of Proposition 4.2.31. We are going to define group homomorphisms
P
Z[J,) = Z[UTT, 4,
oy

which become inverses to each other once we pass to the quotients E;’p and 7,-1. We will
define our morphisms on generators and extend linearly to the whole group.

For p = 2, define tr(x12) = I' and ¢r(I") = x12, where I is the labelled unitrivalent
tree of degree 1 and with labelling set {1,2}. There is no relation to consider when passing
to the quotients E21’2 and 77. Thus ¥ and ¢7 are inverse to each other by definition.

For p > 3 and v = [vy, 1] € J,, define

Yr([vr, va]) = (=1 FHFEC LG (1), 05))
where? L, .= {j € N| x;, appears in v;} U {p} and
Ly X Ly = {(a,b) € Ly X Ly | a > b, and a,bng ﬂLQ}
To see that the anti-symmetry of the Whitehead product corresponds to the AS-relation,
we look at 1p([vy, vg] 4 (—1)#E1*L2) [y, v]) which equals
(_1)#L1+#(L1><>L2)QQT([U1’ Uz]) + (_1)#(L1 XL2)+#(L2X>L1)+#L2@T([U2, Ul])- (4_2.5)

Recall from Construction 4.2.30 that the only difference between the trees W ([vq, vg))
and ¥r([ve, v1]) is the cyclic order at the trivalent node which is adjacent to the leaf with
label p, i.e. Up([v1,vs]) ~as —Wr([v2, v1]). Note that the sum of signs in Equation 4.2.5 is

#HLy+# (L1 Xs Lo) +# (L1 X Lo) + # (Lo Xs L) + #Lo
= #Ly 4+ # (L1 X La) +#Lo + (#L1 — 1)(#L2 — 1),

because #(Ly X~ Lo) + # (Lo X~ Ly) = (#L1 — 1)(#Ls — 1). Thus we obtain that the
element in Formula 4.2.5 AS-related to 0.

Now let us consider the Jacobi identity. For this, take v = [vy, [v2,v3]] € J, with
v; € m,(Conf,(R? x D')), where [; = #L,. Then

Gr (1) oy, [vg, vg]] + (= 1)1y, [, 01]] + (1)1 8w, [01, a]])
= (=1)MWr([v1, [vz, vs]]) + (=)W ([v2, [vs, v1]]) + (=1)“¥r([vs, [v1, va]]), (4.2.6)
where €1, €5 and €3 are the suitable signs. Again by Construction 4.2.30, we have that

(=) [@r([vr, [v2, v3]])] + (1) [P ([, [vs, v1]])] + (=1) [P ([vs, [v1, v2]])]

is IHX-related to 0, and thus the element in Equation 4.2.6 is [HX-related to 0. Therefore,
WYr is well-defined.
Let I’,_1 be a labelled unitrivalent tree of degree p — 1, drawn as in Figure 23, define

¢T(Fn) _ <—1)#L1+#(L1X>L2)¢T(Fn)7

20Note that L; is the set of labels of the tree Ur(v;), in particular #L; is the number of leaves of this
tree.
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where L; and Ly is the set of labels of I and I'” respectively.
_ Similar to the discussion of ¢7, one can show that ¢ is well-defined. Finally, the maps
Y and ¢ are inverses to each other by construction. O

Remark 4.2.33. Construction 4.2.30 and Proposition 4.2.31 are inspired by [Con08, Sec-
tion 4]. Our proof adds missing details of [Con08, Proposition 4.7].

Definition 4.2.34. Let i, j € N with i # j. An (i, j)-marked unitrivalent graph I; is a
unitrivalent graph of degree j together with two nodes v; and v; that satisfy the following
properties:
i) The underlying graph of I" is connected and has exactly one simple cycle?!.
ii) The two marked nodes v; and v; are adjacent to the leaf with label ¢ and j,
respectively, and lie on simple cycle.
Denote by UTG; ; the set of (i, j)-marked unitrivalent graphs.

Definition 4.2.35. For p > 3, define D, to be the abelian group generated by the set of
(4, p)-marked unitrivalent graphs with 1 < ¢ < p, modulo AS- and IHX®*P-relations, i.e.

Dy = Z|U} UT i)/~ as, ~riceer,
where the IHX®P-relation is the usual IHX-relation, except that the edge e, which appears
in Definition 4.2.28,T is not allowed to be an edge that adjacent to the marked nodes.
Construction 4.2.36. Recall from Proposition 4.2.23 the definition of D}** for p > 4.
We are going to construct a one-to-one correspondence
vy, P72

D
sep —
D= | D,

®p ;=

We use ¥ and &1 from Construction 4.2.30 to define ¥ and @p.
For w = [¢y, ¢o] € D;ep, say with repeated occurrence of xy,_1, apply ¥r to ¢; and to cs.
We obtain the following two labelled unitrivalent trees I'y := Wy (cy) and Iy = Up(cy).

p-1 k kE p-1
Define ¥p(w) to be the following (7, p — 1)-marked unitrivalent graphs.

k

AN

<< >

p-1
FIGURE 24. A visualisation of the labelled unitrivalent graph ¥p(w).

215 simple cycle is defined as a loop in the graph with no repetitions of nodes and edges allowed, other
than the repetition of the starting and ending nodes.
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For a (i,p — 1)-marked unitrivalent diagram I3, ;, we can draw [, ; as in Figure 24.
Then define @p(L;,-1) = [@r([1),Pr(I3)]. By construction the maps ¥p and @p are
inverse to each other.

Proposition 4.2.37. For every w = [[c1, [c2, ¢3]], ca] € Di®, say with ¢; € m,(R* x D),
we have in Z|D5P] the separated Jacobi identity

(_1)(l3_1)l1 [[Cla [CQa 03]]7 C4i| + (_1>(l1_1)l2 [[627 [037 Cle c4:| + (_1)(l2_1)l3 [[037 [Cla 02”7 C4:| =0.
Proof. Apply the Jacobi identity to [cq, [c2, c3]]- O
Remark 4.2.38. Note that the usual Jacobi identity is not well-defined in Z[D;P].

Proposition 4.2.39. Recall the group E;_Lp/tors from Proposition 4.2.23. For p > 4,
the construction above induces an isomorphism E;fl,p/tors =D, 1 of groups.

Similar to Lemma 4.2.32, we obtain the following presentation of E;_Lp /tors.

Lemma 4.2.40. We have
p 1 p/tOl"S [D;S)ep]/w7
where ~ denotes relation induced by antisymmetry and the separated Jacobi Identity. [

Proof of Proposition 4.2.39. Similar as in the proof of Proposition 4.2.31, we can define
group homomorphisms

YD p-1
ZIDy®) = Z[| ) Dip-1]-
o0 o
For w = [e1, co] € D;P, say with repeated occurrence of w1, define the set of labels
Li={j € N|zj,  appears in ¢;} U {p — 1}. Define ¢p(w) = (= 1)#E=L)y, (w).
For I ,—1 € Dy -1, drawn as in Figure 24, denote by L, the labelling of I;. Define
ép(Tp-1) = (D)) dp(D, ).
Similar as in the proof of Proposition 4.2.31 we can check by explicit computation
that the induced maps ¢D and ngD on the quotients E1 /tors and D,_; are well-defined.
More precisely, antisymmetry corresponds to AS- relatlon and the separated Jacobi identity

corresponds to IHX®P-relation. By construction the maps 1/, and ¢, are inverse to each
other. n

Definition 4.2.41. Define the following relations on Z[UTG]|:

i) Let I" be a labelled unitrivalent graph. Let e be the edge connecting the leaf
labelled by n and the adjacent trivalent node v. Then I"is STU -related to the
difference I — I'" of the following two labelled unitrivalent graphs I" and I
Denote by {e, e1, ea} the ordered set of edges at the node v, i.e. e < e; < ey (cyclic
order). The graph I arise from I the following steps: First, delete the edge e, the
node v and the leaf labelled by n. Second, add two leaves, labelled by n and n + 1
with adjacent edges e; and e; respectively. Third, relabel the leaves labelled by
m with m + 1 if m > n. The graph I"” is constructed similar to I’. For I'” the
adjacent edges of the leaves labelled by n and n + 1 are e; and ey respectively. The
STU-relation is depicted in Figure 25.

T AL

n nt+1 n nt+l

FIGURE 25. A visualisation of the STU-relation.



VASSILIEV INVARIANTS VIA MANIFOLD CALCULUS 49

ii) Let I be a labelled unitrivalent graph. Then I'| — I is STU?-related to Iy — Iy,
where I'] — I is obtained by performing the STU-relation at the leaf of I" labelled
by n, and Iy — I} is obtained by performing the STU-relation at the leaf of I’
labelled by m. The STUZ%relation is depicted in Figure 26.

TV X LT - XT

n  m m+l n m m+l nn+l m n n+lm

FIGURE 26. A visualisation of the STU?-relation.

Remark 4.2.42. Note that the STU?relation is finer than the STU-relation.
Proposition 4.2.43. The STU*-relation is well-defined on Z[UTT),] for p > 1. O

Proof. This is clear because the STU?-relation does not change the connectivity and degree
of the unitrivalent graphs, and it also does not add simple cycles to the graphs. 0

Recall the computation of the differential d: E;—l,p — E;,p from Proposition 4.2.24.

Note that in the computation only d!| EL_, , [tors is relevant, and by abuse of notation

we will write d' instead of d'|z . jtors 10 the following. By Proposition 4.2.31 and
p—L,p

Proposition 4.2.39 we can consider d' as a map between two groups of unitrivalent graphs
as follows:

LpT ¢} dl O@DZ ,Dp,1 — 7;,1.

By abuse of notation we will also denote this map between D,_; and 7,1 by d".
The following proposition describes what d' means on the level of unitrivalent graphs.

Proposition 4.2.44 (|Con08, Proposition 4.8]). Let 7 € T,_1, then 7 € im(d") if and
only if T is STU?-related to 0.

Proof. “<=” Tt is sufficient to show that for w = [¢1, ¢o] € DP, say with repeated occurrence
of 41, we have Up(d!(w)) = B (9F(w)) + §7 (7 (1)) is STU-equivalent to 0. As in

Proposition 4.2.24, we write (without loss of generality) ¢; = [... @ip-1 ... Tpp-1...] and
Cy = [ o Tkp—1---Tjp-1--- ] Thus
ET(Cl) = (=11
Ur(ea) = (—1)21%
Vp(w) = (=1)* Ty,
where I, I and I, are depicted in Figure 27. We will discuss the signs €1, €5 and €, in
the end.
k
Q)
L % J —
Fl Fz U):
—p-1 p-1— -
p-1

FIGURE 27. Visualisations of I, I and I,.
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k+1 kE+1

FIGURE 28. Descriptions of the labelled unitrivalent trees I} and 7.

Recall the formula for 9*(w) from Proposition 4.2.24. We write

0" (w) = (=1)*[e1, 5] + (=1)*[ei*, &3],

where ¥, &t A1 and c§ correspond exactly to the four Lie brackets in the formula of

O%(w). Thus we have

Prp(ch) = (- 1)61F1k
Ur(cs™) = ()2t
Gr(c™) = (=) I

or(cs) = (1)1,

where I'F, I 7™ and I'F are the labelled unitrivalent trees depicted below

—k k1 — — k+1 k —
F{f Fk+1 Fk+1 Fég
p p p p

Note that the underlying unlabelled trees of ¥ and I'*™ for i = 1,2 are the same as
the ones for I respectively. Furthermore, we have

Ur(le, M) = (<150
Dr([H o)) = (~1) I3
where I} and I'? are the labelled unitrivalent trees depicted in Figure 28. We perform the
same steps for O~ (w) = (—=1)P" ey, ] + (—1)P7 ), ca], thus obtain
Ur(d)) = (1) 17
Ur(d) = (=1)*17,
where I'T and I} are the labelled unitrivalent trees depicted in Figure 29.

Furthermore, ¥y([c1, c5T]) = (=1)% T and 9y ([, co]) = (—1)% 12, where I} and I72
are depicted® in Figure 29. Reviewing the leaves of I} and I ; as placed on the oriented

22Here we join the trees at the leaves labelled by k. Note that Construction 4.2.30 only considers the
case where we join at the leaves labelled by p. The construction for k instead of p is analog. But, one has
to check that both constructions apply to the same tree yield the same iterated Whitehead product.
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— k
Iy
— P p p
k Q) k QO
. p-1 p-1
Iy
— D
1 2
I, I

FIGURE 29. Descriptions of the labelled unitrivalent trees IV, I}, and I}

line, we get
k k+1 > k k+1
p p k k

Thus up to signs, we have that
Gp(d (W) = (=D (=)L + (~1)FLR) + (1P (=) T + (=1)%T7)
is STUZ%related to 0. Now let us check the signs. For i = 1,2, let L; be the set of labels
I;. Thus we have
Ew — €1 + €9 + #Ll + #(Ll XS Lg)
where €; and €y appeared right at the beginning of the proof. For i € {1,2} and
j € {k,k + 1} let Lk be the set of labels of I/, and L? be the set of labels of I
Then we have
€ = €1 + €2 + #LY + #(LY x> L5H),
€ = €1+ e+ #HLTT + #(L x5 L),

611) = €1 + €9 + #Ll + #(Ll XS Lg),

€ = €1+ e+ #LE + #(IF x5 Ly).
Recall Remark 4.2.26 and thus observe that #L; = #Lk = #Lk+1 #L%, Furthermore,
(LMY o LEY = #(LY xo LA™Y + 1, where the +1 arises because of the pair (k + 1, k),
and #(LY X~ Ly) = #(Ly x~ L) + 1, where the +1 arises because of the pair (p,p — 1).
Thus we can write ¥r(d'(w)) as

Gyp(d (w)) = (~)MEIE = ) + (1P (L, - 1), (4.2.7)
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For the signs we use

# (LY % Lg) = # (Lo \ {k}) x> (L2 \ {k}))
+# ({k+ 1} x5 (L2 \ {k}))
+# (Lo \ {k}) x5 {k}),
# (L1 x> L5) = ## (Lo \ {k}) x5 (L2 \ {k})) + #(L2 \ {k,p — 1}),
#(La \ {k,p — 1}) = #({k + 1} x5 (L2 \ {k})) + #((L2 \ {k}) x> {k +1})

p—k—=2=#((L2\ {k}) x> {k+1}) + # (L1 \ {k}) x> {k}).
Thus we we have
k+ez+p—1+€;:2p—3,
i.e. the sign before (I} — I}}) and (I} — I}) in Equation 4.2.7 are different. We conclude
thatyr(d* (w)) is STU? related to 0.

“=" It is sufficient to prove that any linear combination of the form 1) — IY — I'? + I}
with 1 < k < p — 2, lies in the image of d*. Note that F,? — Fkl is the result of performing
a STU-relation at the trivalent node adjacent to the leaf with label k in I}, = ¥p(w), cf.
Figure 27. Similarly, I pl - I pQ is the result of performing a STU-relation at the trivalent
node adjacent to the leaf with label p—1 in I',,. Thus we can obtain the linear combination
Iy — I — I+ I} via performing STU-relations on a (k,p — 1)-marked unitrivalent graphs
at its two marked trivalent nodes. By Proposition 4.2.39, the domain of d' is exactly the
set of (k,p — 1)-marked unitrivalent graphs.

In conclusion, the map d': D,_; — T,_1 is of the form depicted below

iRt N o

p-lp .. p-1p k k+1 P k k+1
P p k: k

Fk -1
FIGURE 30. An example of d' applied to a (k,p — 1)-marked unitrivalent graph.

Consider the sign in front of I} ,_; and I in the equations 1 ([c1, c2]) = (—1)* Ik p—1
and ET([Clv ch]) = (—1)6;]})1. First recall that

€w =€+ €2+ # (L1 X= La),
€, = €1+ €2+ # (L1 x5 L)

Observe that we have # (L1 X~ L) = # (L1 X Ly) + # (L2 \ {k,p}), where the term
# (Lo \ {k,p}) arises because of the set of pairs {(p—1,2) € L1 X LY | x # k,p}. Moreover
#L,+# (Ly \ {k,p}) = p—1. Thus the sign difference between ¢, ([c1, cz]) and ¥y ([c1, b))
is (—1)P~!, which cancels with the sign in front of [c1,ch] in the expression of 9P~ (w).
Therefore, I}, ,—1 and I pl have the same sign, i.e. ¢, and 611) have the same parity. U

Remark 4.2.45. Viewed on generators, d' maps a (i,p — 1)-marked unitrivalent graph to
linear combination corresponding to a STUZ-relation at two trivalent nodes which are
adjacent to the leaves with labels £ and p — 1 respectively, cf. Figure 30.

The proof presented here adds missing details to the article [Con08]|, especially to the
proof of Proposition 4.8. Furthermore, [Con08, Proposition 4.8] considers rational coeffi-
cients, whereas our proof verifies the version of the proposition with integral coefficients.
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Corollary 4.2.46.
i) Forp > 4, the group Ep?,p 15 1somorphic to the abelian group generated by unitrivalent
trees of degree p — 1, modulo AS-, IHX-, and STU?-relations.
ii) For p =3, we have E34 =T, = 7.
iii) Forp=0,1,2, we have Eip =0.

Proof. Statement i) follows from Proposition 4.2.44. Statement ii) follows from the fact
that d': E2173 — E%s is trivial, cf. Proposition 4.2.21, and E§5 = 7Ty, cf. Proposition 4.2.31.
Statement iii) follows from the fact that E;?p =0 for p=0,1,2, cf. Proposition 4.2.21. [

5. CONCLUSION AND FURTHER WORKS

To conclude our presentation of the connection between Vassiliev invariant and the
Taylor tower of the embedding functor Emb(—), let us reflect on our approach encountered
in the text and mention some further work.

First, let us mention briefly the methods used in [BCKS17|, where our inspiration comes
from. In [BCKS17], the authors also construct a cosimplicial space C, for the tower of
fibrations - -- — T, Emb(I) — T,,_; Emb(I) — - -+ — Ty Emb(I), via a compactification of
Conf, (R? x D), such that Cp,; ~ Conf, (R* x D) and Tot" Cy ~ T,, Emb(I). Compared
with the cosimplicial space €mb, in Construction 4.1.11, the cosimplicial space C, has
the advantage that it is geometric and various versions of C, have been used in context
concerning Vassiliev invariants or (finite type) invariants of 3-manifold, cf. [AS94]| and
[BT94]. Using this cosimplicial model, the space K and T, Emb(I) become E;-spaces
(i.e. spaces with an action of the little intervals operad) and this Ej-action on T,, Emb(I) is
used to define an abelian group structure on my(T,, Emb(I)), cf. [BCKS17, Corollary 4.13].
Furthermore, the authors of [BCKS17| proves that this group multiplication is compatible
with connected sum of equivalent classes of knots, cf. [BCKS17, Section 5.7], which is an
important ingredient of our proof of Theorem 3.2.6. We are working on achieving similar
results using the cosimplicial space Emb,, for example applying [MS04, Theorem 3.1].

The connection between Vassiliev invariant and the embedding functor Emb(—) can be
expressed in the following diagram:

mo(T,, Emb(I)) < > EXS, 4 B, «—— E},
7 (I)
o (K) n(T) in(Dlg, _, ? ~ o
y @ ZIUTTn—1] Z[UTT,,_1]
7T0 (IC)/NCn N 2 g?’L—l [\éT04a] AS, IHX, S%UQ < AS, IHXl ,

where n > 3, and?®
E, = ker (mo(T, Emb(I)) — mo(T,—1 Emb(I))),
gn,1 = ker (Wo(]C)/Ncn — Wo(lC)/NC7L71).

Except for the diagram marked with “?”, we know that the diagrams commute. We would
like to know whether the diagram “?” also commute, which could involve calculation
of higher differentials of the spectral sequence E7 ,q > p > 0 and their combinatorial
interpretations. Thus, as step one, we wonder whether we can generalise the combinatorial
interpretation from Section 4.2.4 to the whole first page of the spectral sequence.

23See [CT04a] for the definition of G, _;.
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Last but not the least, in the proof of Theorem 3.2.6, we actually proved that a genus
one capped grope of degree n gives a path in T,, Emb(I). However, grope cobordism of
knots in general does not restrict to genus one gropes, cf. [CT04b]|. Therefore, we would
like to find out whether higher genus grope also has an interpretation in the Taylor tower of
Emb(—). In [BCKS17] the authors conjectured that the map 7, (I).: mo(K) — T,, Emb(I)
is a universal additive Vassiliev invariant of degree at most n — 1. Since grope cobordism
characterises universal additive Vassiliev invariant, one of our goals is to construct a tower
of fibrations - - - — J#, — J,_1 — ... using grope cobordism such that %, ~ T, Emb(I).
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