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Zusammenfassung

Das Ziel dieser Bachelorarbeit ist die Berechnung der Alexander-Polynome von Torus-

knoten und Twist-Knoten. Hier ist eine kurze Zusammenfassung des Inhalts dieser

Arbeit. In Kapitel 1 führen wir fundamentale Definitionen und Beispiele ein. Mit der

Notation von Kapitel 1, stellen wir in Kapitel 2 eine wichtige Knoteninvariante von

Kodimension 2 vor, die Knotengruppe. Ab Kapitel 3 betrachten wir klassische Knoten.

Zuerst lernen wir die Seifertfläche M eines Knoten K kennen, die eine kompakte orien-

tierbare Fläche mit ∂M = K ist. Mit der Seifertfläche konstruieren wir eine universelle

abelsche Überlagerung X̃ des KnotenkomplementsX = S3−K, damit in Kapitel 4H1(X̃)
berechnet werden kann. In Kapitel 4.3 definieren wir das Alexander-Polynom eines

Knotens als die Determinante einer Seifert-Matrix, die aus einer beliebigen Seifertfläche

des Knotens berechnet werden kann. Am Ende der Arbeit dient die Berechnung des

Alexander-Polynoms des Twist-Knotens als eine Anwendung dieser Definition.
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Introduction

A knot K in a space X is a subspace which is homeomorphic to a sphere. In this thesis,

it is assumed most of the time that K ≈ S1 and X = R3 or S3, which is classical knot

theory. In this thesis, we call two knots equivalent if and only if they are ambiently

homeomorphic (Definition 1.3). For example, there are only two equivalence classes of

knots in the 2-torus. But there are infinitely many equivalence classes of torus knots,

which are the knots embedded in the standard torus as a subspace of S3. In the first

case, the whole space X is the torus, where as in the latter one has X = S3. In order to

classify knots, we need knot invariants which assign to equivalent knots the same object.

For a one-dimensional knot K in S3, many knot invariants have been constructed. For

instance, the fundamental group of a knot complement (the knot group) is a useful

knot invariant in codimension 2. Also from a Seifert surface (Definition 3.2) of a knot

we can compute the torsion invariant [Rol76, Chapter 6] and the Alexander invariant

(Chapter 4.1). Besides there are more recent development of knot invariants like Jones

polynomials and Khovanov homology.

The purpose of this Bachelor thesis is computing the Alexander polynomials ∆(t) (Def-

inition 4.15) of torus knots (Definition 2.7) and twist knots (Chapter 1.2). Torus knots

are defined as the images of embeddings from S1 into the standard torus, considered as

a subspace in S3. For example, the trefoil knot is a torus knot.

Figure 1: Trefoil knot embedded on a torus [WC06]

As for the twist knot, consider a handle-body decomposition of a compact, connected

genus one surface M with boundary:

Figure 2: A compact connected genus 1 surface with boundary
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Introduction 3

Define the twist knot Km,n as the boundary of M after fully twisting each handle m

and n times respectively with m, n integers:

Figure 3: Km,n with m < 0 and n < 0

For a one-dimensional knot K in S3, the Alexander polynomial is a knot invariant that

describes the Λ-module structure of the first homology group H1(X̃) of the universal

abelian cover X̃ of the knot complement, where Λ is the ring of Laurent polynomials

over Z. We introduce first two explicit methods to compute a Λ-module presentation of

H1(X̃):

(a) Computation using the knot group (Chapter 4.1.2).

(b) Computation using a Seifert surface S to construct the universal abelian cover

X̃(Chapter 4.1.1);

(c) Computation using the Seifert matrix of S

Using (b), we compute the Alexander polynomial of a torus knot Tp,q (Chapter 4.1.3) :

∆(t)p,q =
(1 − t)(1 − tpq)
(1 − tp)(1 − tq) .

Using (c), we compute the Alexander polynomial of a torus knot Tp,q (Chapter 4.3.2) :

∆(t)m,n =mnt2 + (1 − 2mn)t +mn.

As consequences we get

(1) For p, q > 1, two torus knots Tp1,q1 , Tp2,q2 are equivalent if and only if {p1, q2} =
{p2, q2};



4 Introduction

(2) For mn ≠ 0, the product mn is an invariant of the twist knot Km,n. We need

additional knot invariants to distinguish Km,n and Km′,n′ with mn =m′n′;

(3) K1,1 and K−1,−1 are the only twist knots that can be embedded in a torus, i.e. they

are also torus knots. In particular K1,1 is a right-handed trefoil knot and K−1,−1

is a left-handed trefoil knot.

Here is a brief description of the structure of this thesis. Chapter 1 is devoted to in-

troducing the basic definitions of knots and knot equivalence and providing the readers

with some examples of classical knots in S3. In chapter 2, we present an important knot

invariant in codimension 2, the knot group. From Chapter 3 we restrict our attention

to classical knots. First we introduce Seifert surfaces of a knot which are compact, con-

nected oriented surfaces whose boundaries are the knot. Then we construct a universal

abelian cover of the knot complement using a Seifert surface of the knot, which will

be used at Chapter 4.1 to give two methods for computing the first homology group

of the universal abelian cover H1(X̃). In Chapter 4.3, the Alexander polynomial of a

knot K ⊂ S3 is defined as the determinant of a Seifert matrix, a matrix with polyno-

mial entries computed from an arbitrary Seifert surface of K. To close, we compute the

Alexander polynomials of twist knots from this definition.

The main reference for this thesis is [Rol76]. In addition, we refer to [Mas77] for an

explanation of covering spaces and properties of free groups.
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Chapter 1

Definitions and Examples

This chapter aims at giving an elementary introduction to knot theory, including basic

definitions and some examples of classical knots. The main reference for this chapter is

[Rol76, Chapter 1].

1.1 Notation and Definitions

Definition 1.1. A subset K of a space X is a knot in X if K is homeomorphic to a

sphere Sp.

Unless specifically mentioned, all knots are of codimension 2, i.e. we take p = n, X ≈ Rn+2

or X ≈ Sn+2.

Remark 1.2. In our definition we do not take the orientation of the knot into considera-

tion. There are other different definitions of knots besides the one above. For example,

in some sources a knot is defined as an embedding K ∶ Sp ↪X instead of a subset of X

in which orientations may play a role.

We can also define different equivalence relations for knots as follows:

Definition 1.3. Given two knots K,K ′, these are

� ambiently homeomorphic if there is a self-homeomorphism h ∶ X Ð→ X such that

h(K) =K ′. In other words (X,K) ≈ (X,K ′);

� orientation-preservingly homeomorphic if there is an ambient homeomorphism h ∶
(X,K) Ð→ (X,K) and h is orientation-preserving;
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2 Definitions and Examples

� ambiently isotopic if there is an ambient homeomorphism h ∶ (X,K) Ð→ (X,K)
that is ambiently isotopic to id ∶X Ð→X.

Knots in an equivalence class are called knots of the same knot type.

Remark 1.4. According to the Alexander-Guggenheim theorem, orientation-preserving

homeomorphism (isoposition) is equivalent to piecewise linear ambient isotopy. For a

proof, see [RS72, Chapter 3, 4].

In this thesis, we say for brevity two knots are equivalent if they are ambiently home-

omorphic. If one of the other two equivalence relations is used, we will mention it

explicitly.

1.2 Examples

1. A polygonal knot in R3 is a knot which is a union of finite line segments. A tame

knot is a knot which is equivalent to a polygonal knot. Knots which are not tame

are wild.

(a) Polygonal Knot (b) Unknot (c) Wild knot

2. The subspace Sn−2 ⊆ Rn−1 ⊆ Rn ⊆ Rn +∞ ≈ Sn in Sn is called the trivial knot or

unknot in codimension 2.

3. Define the standard torus T in S3 as the image of the embedding iT :

S1 × S1 ↪ R3 ⊂ S3

(cos θ, sin θ, cosϕ, sinϕ) ↦ (cos θ + cosϕ cos θ, sin θ + cosϕ sin θ,1 + sinϕ) .

Figure 1.2: Standard torus

The trefoil knot T2,3 in R3 or S3 is defined as the image of the embedding in S3:
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S1 → T ↪ S3

z ↦ (z2, z3) ↦ iT (z2, z3) .

The trefoil knot belongs to the family of torus knots (Definition 2.7) and twist knots

(below). Also there are the left-handed trefoil and right-handed trefoil, which are

ambiently homeomorphic to each other by reflection. However the reflection is not

orientation-preserving. In 1914 Max Dehn showed that left-handed trefoil knot

and right-handed trefoil knot are not ambiently isotopic to each other [Deh14].

Figure 1.3: Left-hand and right-hand trefoils

4. Consider the handlebody decomposition of the compact connected oriented surface

M of genus 1 with boundary which has exactly two 1-handles. The twist knot Km,n

is defined as the boundary of M after fully twisting the two handles m and n times

respectively where m and n are integers. Define the left diagram below as +1 full

twist and the right diagram below as −1 full twist.

Figure 1.4: Positive (left) and negative (right) full twists

Figure 1.5: An Example of Kmnwith m < 0, n < 0

Remark 1.5.

� It doesn’t matter which handle is in front in the projection, since by an isotopy

these two knots can be transformed into each other, i.e. defines equivalent

knots. We show this by pictures:
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Figure 1.6

� Km,n and Kn,m define the same knot since this depends merely on to which

plane we project the knots.

� Km,n and K−n,−m are equivalent knot since they differ by a reflection.

Figure 1.7



Chapter 2

Knot Invariants and Torus knots

Just like topological spaces, knots can be classified using knot invariants.

Definition 2.1. A knot invariant is a function K ↦ f(k) which assigns to each knot

K an object f(K) in such a way that knots of the same type are assigned equivalent

objects.

This chapter introduces an important and useful knot invariant in codimension 2, the

knot group, and its application to torus knots. The main reference for this chapter is

[Rol76, Chapter 2].

Remark 2.2. One hopes that f(K) is on the one hand easy to calculate, and on the other

hand, sensitive enough to solve the problem at hand. In the case of codimension 2, the

fundamental group of the knot complement is a very useful tool. In chapter 4 we shall

introduce two more invariants: the Alexander invariant and the Alexander polynomial.

2.1 The knot group

Theorem 2.3 (Gordon-Luecke, 1989). Two tame knots in R3 or S3 are equivalent if

and only if they have homeomorphic knot complements.

For a proof of this theorem, see [GL89].

Most of the time it is hard to describe or characterize the complement of a knot topolog-

ically. However by composing the function c with any functor F from topological spaces

to an algebraic category will give a knot invariant, sending K to F (X −K).

In codimension 2, the knot group is the an important knot invariant.
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6 Knot Invariants and Torus Knots

Definition 2.4. If K is a knot in Rn, the fundamental group π1(Rn −K) of its comple-

ment in Rn is called the knot group of K.

Using the proposition below we can also define the knot group as π1(S3 −K).

Proposition 2.5. If B is a bounded subset of Rn such that Rn − B is path-connected

and n ≥ 3, then the natural inclusion i ∶ Rn −B Ð→ Sn −B induces an isomorphism:

i∗ ∶ π1(Rn −B) Ð→ π1(Sn −B) .

Proof. Choose any neighbourhood U of ∞ in Sn which misses B and is itself homeo-

morphic to Rn. Then Sn −B ≈ (Rn −B) ∪ U , (Rn −B) ∩ U ≈ U −∞ ≈ Sn−1. According

to the Seifert-van Kampen theorem, the following commutative diagram is a push out

diagram in groups:

π1(Sn−1) π1(Rn −B)

π1(U) π1(Sn −B) .

i∗

i∗ i∗

i∗

Since Sn−1 and U are simply connected,

i∗ ∶ π1(Rn −B) → π1(Sn −B)

is an group isomorphism.

Remark 2.6. For tame knots, knot groups are only interesting in codimension two: by

transversality theorem [W.H33, Theorem 2.1], a knot K ≈ Sk in Sn has simply-connected

complement if n − k ≥ 3.

Now we are going to take a look at an important family of nontrivial knots in S3, the

torus knots.

2.2 Torus knots

Definition 2.7. The image of any embedding t ∶ S1 → T = S1 × S1 ⊂ S3 is a torus knot,

where T denotes the standard torus in S3.
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Figure 2.1: A torus knot

Theorem 2.8. Any embedding t ∶ S1 → S1 × S1 is ambiently isotopic to an embedding

tp,q of the form:

S1 ↪ S1 × S1

z ↦ (zp, zq)

with ∣p∣, ∣q∣ coprime non-negative integers.

Proof. Each embedding i ∶ S1 → T determines an equivalence class of H1(T ) ≅ Z ⊕ Z,

which we shall denote by [i]. Furthermore [i] = (a, b) with gcd (a, b) = 1 [Rol76, Theorem

2.C.2].

From [Rol76, Theorem 2.C.16] we conclude that the images J,K of the two embeddings

j, k ∶ S1 → T respectively are ambiently isotopic as subspaces of T if and only if [j] =
± [k]. By isotopy extension theorem [W.H33, Chapter 8, Theorem 1.3] the ambiently

isotopy above can be extended to an ambient isotopy in S3.

On the other hand, each equivalence class (a, b) of π1(T ) with a, b ∈ Z is represented by

S1 → S1 × S1

z ↦ (za, zb) .

Remark 2.9. Composing the map tp,q with projections onto the first and second com-

ponent respectively, we observe that the image of the embedding tp,q is a knot which

wraps around the torus along the longitude ∣p∣ times and the meridian ∣q∣ times.

Remark 2.10. The type of Tp,q does not change by changing the sign of p or q, or by

interchanging p and q, since the image does not change when we change the signs.

Thus we only need to study those embeddings tp,q with p > 0, q > 0, gcd (p, q) = 1. We

denote the image of the embedding tp,q by Tp,q.
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Proposition 2.11. The knot group of Tp,q is Gp,q ∶= ⟨x, y ∣ xp = yq⟩.

Figure 2.2: Trefoil embedded on a torus and the relation of x, y, z

Proof. Consider S3 as the union of two solid tori T1, T2 that have as their common

boundary the torus T

S3 = ∂D4

= ∂(D2 ×D2)

= S1 ×D2 ⊔S1×S1 D2 × S1

= T1 ⊔T T2 .

(2.1)

We have

S3 − Tp,q = (T1 − Tp,q) ⊔T−Tp,q (T2 − Tp,q)

(T1 − Tp,q) ∩ (T2 − Tp,q) = T − Tp,q .

Let the torus knot Tp,q be embedded on T via the embedding tp,q. We shall denote

z ∶= tp,q, x a representative of [(1,0)] ∈ π1(T ) and y a representative of [(0,1)] ∈ π1(T ).
Furthermore we have

T1 − Tp,q ≃ T1 ≃ S1 via x

T2 − Tp,q ≃ T2 ≃ S1 via y .

Therefore we obtain

π1(T1 − Tp,q) = ⟨x⟩

π1(T2 − Tp,q) = ⟨y⟩

π1(T − Tp,q) = ⟨z⟩ .

From remark 2.9 we conclude that

z = xp

z = yq .
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By Seifert-van Kampen theorem:

Gp,q = π1(S3 − Tp,q) = ⟨x, y ∣ xp = yq⟩ .

Theorem 2.12 (O.Schreier). If p, q > 1, then the group Gp,q determines the pair {p, q}.

A proof of this theorem using the Alexander polynomial will be given in Chapter 4. The

original proof given by Schreier can be found in [Sch24].

An immediate result of this theorem is:

Corollary 2.13. There exist infinitely many torus knot types.





Chapter 3

Seifert surfaces

One way to compute the Alexander polynomial of a given knot is by using a Seifert

surface. In this chapter, we define Seifert surfaces and derive some of their properties.

In the last section we construct an infinite cyclic covering of a knot complement by using

a Seifert surface of the knot. This infinite cyclic covering leads to the computation of the

Alexander invariant and the Alexander polynomial in Chapter 4. The main reference

for this chapter is [Rol76, Chapter 5].

3.1 Surfaces and genus

Definition 3.1. A subset X ⊂ Y is said to be bicollared in Y if there exists an embedding

b ∶X × [ − 1,1] → Y such that b(x,0) = x. The map b or its image is then said to be the

bicollar of X.

Definition 3.2. A Seifert surface of a knot Kn ⊂ Sn+2 is a connected, bicollared (as a

subset of S3), compact manifold Mn+1 ⊂ Sn+2 with ∂M =K.

Remark 3.3. From the definition Seifert surfaces are oriented, otherwise they are not

bicollared.

(a) The möbius strip with a trefoil knot as its
boundary (unorientable)

(b) A Seifert surface of a trefoil knot
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12 Seifert surfaces

In the classical case (n = 1), the Seifert surface is a compact connected oriented surface

which can be completely classified by its genus.

Theorem 3.4 (Classification of surface). Every closed orientable connected surface is

homeomorphic to one which appears in the table below, and is classified by its genus

g ≥ 0. Two compact connected surface M,M ′ with boundary are homeomorphic if and

only if they have the same number of boundary components and their associated closed

surfaces M ⊔∂M (⊔ni=1D
2) and M ′ ⊔∂M (⊔ni=1D

2)are homeomorphic. Here n denotes the

number of boundary components of M respectively M ′.

Manifold S2 T 2 T 2#T 2 T 2#...#T 2

Genus 0 1 2 g = number of T 2

Euler characteristic 2 0 -2 2-2g

Definition 3.5. The genus of a compact connected oriented surface M with boundary

is defined to be the genus of its associated closed surface M̂ =M ⊔∂M (⊔ni=1D
2) where n

is the number of its boundary components.

We can now make the following statement:

Proposition 3.6. Let M be a compact connected oriented surface. Then g(M) =
1 − χ(M)+b

2 where b is the number of boundary components.

Definition 3.7. The genus g(K) of a knot K ≈ S1 in R3 or S3 is the least genus of all

its Seifert surfaces.

Remark 3.8. If two knots K1,K2 in S3 are equivalent, the ambient homeomorphism

h ∶ (S3,K) → (S3,K) gives a homeomorphism between Seifert surfaces of K1 and K2

preserving the genus. Together with the following existence theorem the genus of a knot

is a knot invariant.

Theorem 3.9 (Existence theorem). Every knot K ≈ S1 in R3 or S3 has a Seifert

surface.

Proof. Let K denote the knot in R3 or S3 and assign K an orientation and examine

a regular projection [HH63, Chapter I, page 6-8]. Near each crossing point, delete the

over- and undercrossings and replace them by “shortcut” arcs in the projection plane as

pictured, so that the orientation of the line segments is preserved.
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Figure 3.2: Introducing a “shortcut” arc

We now have a collection of disjoint simple closed oriented curves in the plane which we

shall call Seifert circles. Each Seifert circle bounds a disk in the plane, and although

they may be nested, these disks can be made disjoint by pushing their interiors slightly

off the plane, starting with the innermost ones and working outward. Moreover these

disks have bicolloars which may be locally assigned a “ + ” and “ − ” side according to

the convention, say, that the oriented boundary runs counterclockwise as seen from the

+ side.

We now connect these disks together at the old crossings with half twisted strips to form

an oriented surface M whose boundary is the original knot K.

Figure 3.3: Connecting the disks

Remark 3.10. The above explicit construction is called the Seifert algorithm. There are

also existence theorems for higher dimensional Seifert surfaces, see [Rol76, Chapter 5.B].

A useful proposition follows:

Proposition 3.11. Given a regular projection of a tame knot K and construct a Seifert

surface M of K using the Seifert algorithm, let c be the number of crossings and s be

the number of Seifert circles. Then the Seifert surface constructed has genus

g(M) = 1 − s + 1 − c
2

.
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Proof. We can deformation retract Seifert circles to points and crossings connecting

Seifert circles to curves connecting the points. Then the Seifert surface has the homotopy

type of a CW-complex with s 0-cells and c 1-cells. Thus

χ(M) = s − c .

Therefore g(M) = 1 − (s−c)+1
2 = 1 − s+1−c

2 .

Proposition 3.12. A knot K ≈ S1 in S3 has genus zero if and only if it is a unknot.

Proof. If K is an unknot, K bounds a disk in S3, which has genus zero. Thus g(K) = 0.

If g(K) = 0, K is the boundary of a Seifert surface with genus 0. A genus 0 surface

with one boundary component is a disk. Thus K is the boundary of a disk, i.e. an

unknot.

Proposition 3.13. The torus knot of type Tp,q has genus g(Tp,q) ≤ (p−1)(q−1)
2 .

Proof. For Tp,q, we can construct a representative of Tp,q on a standard torus [Ada04,

Chapter 5, 109-110] with a regular projection constructed by the following steps:

1. Mark the following 2q points in R2 (in polar coordinate): {(1, kφ)}k=1,2,...,q and

{(2, kφ)}k=1,2,...,q, φ = 2π
q ;

2. Connect (1, kφ) with (2, kφ) by q line segments, k = 1,2, ..., q;

3. Construct p arcs pn = {(r, θ)∣ θ−φ
r−(2−n

p
) =

φ
1
p

= pφ} (i.e. these arcs are linear with

respect to polar coordinates), where the nth arc has endpoints (2 − n
p , φ) and

(2 − n+1
p ,0), n = 0,1, ..., (p − 1). Note that no two of these curves intersect each

other;

4. Construct arcs connecting (2− n
p , kφ) and (2− n+1

p , (k−1)φ), n = 0,1, ..., (p−1), k =
2,3, ..., q by rotating the arcs constructed in Step 3 counterclockwise (k−1)φ around

the origin. Then we obtain p pairwise non-intersecting strands consisting of those

arcs and the arcs constructed in Step 3. Let these p strands cross over the q line

segments constructed in Step 2.

(a) T35 [Ada04, Chapter 5, Figure 5.9] (b) A regular projection of T35
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Applying the Seifert algorithm to this projection we create “shortcut” arcs connecting

each pair of adjacent images of pi under the rotations in Step 3. Therefore we get p

Seifert circles {si}i=0,1,...,p−1. Here si consists of the arc pi, its images under rotation in

Step 4 and the short cuts connecting two adjacent arcs among them. Furthermore we

have q(p − 1) crossings in total.

Figure 3.5: The crossings(left) and after applying the Seifert algorithm(right)

Using the formula in the previous proposition:

g(Mp,q) = 1 − p − (p − 1)q + 1

2
= (p − 1)(q − 1)

2
.

3.2 The cyclic covering of a knot complement

As mentioned at the beginning of this chapter there is an important class of covering

spaces of a knot complement X = Sn+2 −K, K ≈ Sn, which will be used in the next

chapter to define the Alexander invariant and the Alexander polynomial of K. A Seifert

surface of K allows us to construct these covering spaces explicitly.

Let M be a Seifert surface for the knot K ≈ Sn in Sn+2 and let ϕ ∶ M̊ × (−1,1) ↪ Sn+2

be an embedding such that M̊ = ϕ(M̊ × 0), i.e. ϕ is a bicollar of the interior of M . We

denote:

N = ϕ(M̊ × (−1,1))

N+ = ϕ(M̊ × (0,1))

N− = ϕ(M̊ × (−1,0))

Y = Sn+2 −M

X = Sn+2 −K
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In this way we have two triples (N,N+,N−) and (Y,N+,N−). Let us form countably

many copies of each, denoted (Ni,N
+
i ,N

−
i ) and (Yi,N+

i ,N
−
i ), i ∈ Z. Let Ñ = ⊔i∈ZNi

and Ỹ = ⊔i∈ZYi be the disjont unions. Finally, we form an identification space X̃ by

identifying N+
i ⊂ Yi with N+

i ⊂ Ni via the identity homeomorphism, and likewise identify

each N−
i ⊂ Yi with N−

i+1 ⊂ Ni. We shall call the resulting space X̃.

Figure 3.6: Construction of X

Proposition 3.14. X̃ is a path-connected non-compact (n+2)-manifold. There is map

p ∶ X̃ → X which is a regular covering space. There is a covering automorphism τ ∶
X̃ → X̃, which takes Yi to Yi+1 and Ni to Ni+1, and τ generates the deck transformation

AutX X̃.

Proof.

� X̃ is path connected. We know that each Yi, Ni is path-connected, i ∈ Z.

Pick arbitrary points yi ∈ Yi, yi+1 ∈ Yi+1, there are points n−i+1 ∈ N−
i+1 ⊂ Yi and

n+i+1 ∈ N+
i+1 ⊂ Yi+1 such that yi and n−i+1, n−i+1 and n+i+1, n+i+1 and yi+1 are path

connected. Thus yi and yi+1 are path connected.

� Regular covering

Define p ∶ X̃ →X by

p∣Yi ∶ Yi
natural inclusionÐÐÐÐÐÐÐÐÐÐ→X,∀i ∈ N

p∣Ni ∶ Nj
natural inclusionÐÐÐÐÐÐÐÐÐÐ→X,∀j ∈ N .

It follows from the construction that p is well-defined at the intersection of Yi and

Nj . Thus p is well-defined on X̃.

p is continuous because ∀U ⊂X open subspaces:

p−1(U) = ∪(U ∩ ((Yi−1⋃̇Ni
Yi)))
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which is an infinite union of open sets and therefore is again open.

p is a covering map because:

∀x ∈ Y −N ⊂X, ∃Ux ⊂ Y, Ux an open neighbourhood of x, since Y is open. Thus

p−1(Ux) = ∪(Ux ∩ Yi)

where for each i, Ux ∩ Yi are disjoint and mapped homeomorphically to Ux. The

same applies to the point in N . In particular, this is an infinite covering.

Since X̃ is a covering space of X, a (n+ 2)-manifold, X̃ is also a (n+ 2)-manifold.

Furthermore X is non-compact and p is surjective, thus X̃ is also non-compact.

Now let’s consider the deck transformations of X̃.

Define a Z action on X̃ by

Z × X̃ → X̃

(k, yi) ↦ k.yi = yi+k
(k,ni) ↦ k.ni = ni+k

where yi ∈ Yi, yi+k ∈ Yi+k, ni ∈ Ni, ni+k ∈ Ni+k, p(yi) = p(yi+k), p(ni) = p(ni+k), i ∈
Z, k ∈ Z.

This action is free since if kyi = yi, yi ∈ Yi, i ∈ Z, then k = 0, the same works for

points in Ni, i ∈ Z.

This action is transitive on the fibers since for all y ∈ Y ⊂X, p−1(y) = {yi}i∈Z with

yi ∈ Yi and (j − i, yi) = yj ,∀i ∈ Z, , j ∈ Z. The same works for points in Ni, i ∈ Z.

Therefore p is a regular covering map and AutX X̃ = Z. In particular, τ+ ∶ X̃ → X̃

defined by τ+(x̃) = 1.x̃ and τ− ∶ X̃ → X̃ defined by τ−(x̃) = (−1).x̃ are generators of

AutX X̃.

Definition 3.15. X̃ is called an infinite cyclic cover of the knot complement X.

Proposition 3.16. X̃ is the universal abelian cover of X.

Proof. There is the short exact sequence:

1→ π1(X̃) p∗Ð→ π1(X) → AutX X̃ ≅ Z→ 1 .

Since π1(X̃)/p∗(π1(X)) ≅ Z is abelian, C = [π1(X), π1(X)] ⊂ p∗(π1(X̃)).
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Thus we have a surjective group homomorphism:

Z ≅ π1(X)/C ↠ π1(X)/p∗(π1(X̃)) ≅ Z

which is an isomorphism with kernel p∗(π1(X̃))/C = 0. So we have

p∗(π1(X̃)) = C .

Therefore X̃ is the universal abelian cover.

Corollary 3.17. X̃ depends (up to covering isomorphism) only on the knot type of K,

and not on the choice of Seifert surface or other choices in the above construction.



Chapter 4

The Alexander Polynomial and

the Alexander Invariant

The Alexander invariant is a knot invariant defined as the homology groups of the

universal abelian cover H∗(X̃) as modules of the ring of Laurent polynomials. The

Alexander polynomial is a description of H1(X̃). The two families of knots that are

studied in this thesis are both classical knots whose higher homology groups Hk(X̃)(k ≥
2) are trivial. Therefore, after a short introduction to Alexander invariants, we will

put our main focus on the computation of the Alexander polynomials, some related

properties and two applications. The main references for this chapter is [Rol76, Chapter

5, 7 and 8].

4.1 The Alexander invariant

Definition 4.1. Let Λ denote the ring of Laurent polynomials with integer coefficients

and one variable t. An element of Λ has the form:

p(t) =
s

∑
i=r
cit

i, ci ∈ Z, r, s ∈ Z, r ≤ s.

Addition and multiplication are as usual with polynomials. One can also write Λ as

Z[t, t−1]. The units of Λ are the monomials ±ti, i ∈ Z.

Given a knot Kn ⊂ Sn+2 with complement X. Let X̃ be the universal abelian covering

space of X. Fix one of the two generators τ ∶ X̃ → X̃ of the group of deck transformations

19
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and define the Λ-module structure of H∗(X̃) by:

s

∑
i=r
cit

i(α) =
s

∑
i=r
ciτ

i
∗α

with α ∈Hi(X̃). τ∗ ∶Hi(X̃) →Hi(X̃) is the homology isomorphism induced by τ . Thus

∑si=r citi(α) is again an element of Hi(X̃).

Theorem 4.2. The above Λ-multiplication gives a Λ-module structure on HiX̃,∀i ∈ N.

Equivalent knots have isomorphic Alexander invariants as Λ-modules in each dimension,

modulo appropriate choices of τ .

Proof. It’s easy to see that the Λ-multiplication gives a well-defined module structure

on HiX̃,∀i ∈ N. Now we check that the Alexander invariant is a knot invariant in each

dimension.

Given two equivalent knots K1,K2 in Sn+2, there is an ambient homeomorphism h ∶
Sn+2 → Sn+2 such that h(K1) =K2. Thus h(X1) =X2, where Xi is the knot complement

of Ki, i = 1,2. Thus we have the following commutative diagram of topological spaces

X̃1 X̃2

X1 X2

f12

p1
f21

p2

h

≅

where pi are the universal abelian covering maps of Xi and f12 and f21 are the lift-

ings of h ○ p1 and h−1 ○ p2. f12 and f21 are well-defined, since h∗(p1,∗)(π1(X̃1)) =
h∗([π1(X1), π1(X1)]) = [π1(X2), π1(X2)] and similarly for f21. Furthermore f12 ○ f21 ∈
Aut X̃2 and f21 ○ f12 ∈ Aut X̃1. Thus we get induced group isomorphisms on homology

Hi(X̃1) Hi(X̃2)
f12,∗

f21,∗

We can choose τ1 and τ2 as the generators of AutX1 X̃1 and AutX2 X̃2 respectively such

that the following diagram commutes

Hi(X̃1) Hi(X̃2)

Hi(X̃1) Hi(X̃2)

f12,∗

τ1,∗

f21,∗
τ2,∗

f12,∗

f21,∗

It follows that f12,∗ and f21,∗ are module isomorphisms.
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Therefore generators of AutX1 X̃1 and AutX2 X̃2 can be chosen so that Hi(X̃1) and

Hi(X̃2) are isomorphic as Λ-module for each i ∈ N.

4.1.1 The Computation of H1(X̃) using a Seifert surface

In this section it is assumed that S1 ≈K ⊂ S3. Thus a Seifert surface of K is a compact

connected oriented surface. The following is a method for computing H1(X̃) by using a

Seifert surface of the knot.

Recall from Chapter 3 that given a knot K ∈ S3 with complement X, X̃ can be con-

structed from copies of Y = S3 −M and ϕ ∶ M̊ × (−1,1) ↪ S3, the open bicollar of

M̊ , where M is a Seifert surface with genus g. By the classification of compact con-

nected oriented surfaces, we can find generators a1, ..., a2g of H1(M) such that H1(M) is

free abelian with basis a1, ..., a2g. Using the Alexander duality and the universal coeffi-

cient theorem, there are generators α1, ..., α2g of H1(Y ) such that H1(Y ) is free abelian

with basis α1, ..., α2g. Restrict ϕ to M̊ × {−1
2} and consider the induced homomorphism

ϕ−∗ ∶ H1(M̊ × {−1
2}) ≅ H1(M) → H1(Y ). Define a−i ∶= ϕ−∗(ai), i = 1,2, ...,2g. Similarly

we restrict ϕ to M̊ × {1
2} and define a+i ∶= ϕ+∗(ai), i = 1,2, ...,2g. Thus a−i and a+i can be

written as linear combinations of α1, ..., α2g. Then we obtain a Λ-module presentation

of H1(X̃) as follows:

Proposition 4.3. Fixing the generator τ+ of AutX X̃ that maps Yi to Yi+1 and Ni to

Ni+1, we have a Λ-module structure of H1(X̃) with respect to τ+. Then H1(X̃) has a

Λ-module presentation as follows

H1(X̃) ≅ ⟨{αi}i=1,2,...,2g ∣ a−j = ta+j , j = 1,2, ...,2g⟩

where {αi}i=1,2,...,2g are the generators of H1(Y0) ≅H1(Y ), {ai}i=1,2,...,2g are the genera-

tors of H1(N0) ≅H1(M) and a−i ∶= N−
0∗(ai), a+i ∶= N+

0∗(ai), a−i , a+i ∈ Y0, i = 1,2, ...,2g.

Proof. Consider a curve Γ ∶ R → X̃ which is the lift of a meridian of K under the

universal abelian cover. Consider the open covers of X̃ via

Y ′ = (⊔i∈ZYi) ∪U(Γ)

N ′ = (⊔i∈ZNi) ∪U(Γ)

where U(Γ) is a small open neighbourhood of Γ that strongly deformation retracts to

Γ.
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We have

Y ′ ∩N ′ ≃ ⊔i∈Z(ϕ+i (M̊ × {−1

2
}) ⊔ ϕ−i (M̊ × {1

2
})) ∪U(Γ).

Since Y ′, N ′, Y ′∩N ′ and X̃ are connected, there is the following Mayer-Vietoris sequence

of reduced homology

...→H1(N ′ ∩ Y ′) fÐ→H1(N ′) ⊕H1(Y ′) →H1(X̃) → 0 .

Therefore H1(X̃) is isomorphic to the cokernel of f . From the Mayer-Vietoris sequence

of the obvious covers of Y ′, N ′ and Y ′ ∩N ′ we obtain

H1(N ′ ∩ Y ′) ≅ ⊕i∈Z(H1(ϕ+i (M̊ × {−1

2
})) ⊕H1(ϕ−i (M̊ × {1

2
})))

H1(N ′) ≅ ⊕i∈ZH1(Ni)

H1(Y ′) ≅ ⊕i∈ZH1(Yi) .

These groups are free Λ-modules with basis:

H1(N ′ ∩ Y ′) ≅ ⟨{tka+j } k∈Z
j∈1,2,...,2g

, {tka−j } k∈Z
j∈1,2,...,2g

⟩

H1(N ′) ≅ ⟨{tkaj} k∈Z
j∈1,2,...,2g

⟩

H1(Y ′) ≅ ⟨{tkαj} k∈Z
j∈1,2,...,2g

⟩ .

Furthermore f is the map induced from the inclusions of Y ′ ∩N ′ into Y ′ and N ′. So

f(tka+j ) = (tkaj , tka+j )

f(tka−j ) = (tkaj , tk−1a−j )

for k ∈ Z, j ∈ 1,2, ...,2g.

Note that in H1(N ′) ⊕H1(Y ′)

(tkaj ,0) + (0, tka+j ) = f(tka+j )

(tkaj ,0) + (0, tka−j ) = f(tk−1a−j )

for k ∈ Z, j ∈ 1,2, ...,2g.

Therefore in coker f ,

[(tkaj ,0)] = −[(0, tka+j )]
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[(tkaj ,0)] = −[(0, tk−1a−j )]

where [ ] denotes the equivalence class in coker f . Thus we have

H1(X̃) ≅H1(Y ′)/(tka−j ∼ tk+1a+j ) k∈Z
j∈1,2,...,2g

≅ ⟨tkαj ∣ tk−1a−j = tka+j , k ∈ Z, j ∈ {1,2, ...,2g}⟩

a group presentation of H1(X̃), which leads to the Λ-module presentation of H1(X̃)

H1(X̃) ≅ ⟨{αj} ∣ a−j = ta+j , j ∈ {1,2, ...,2g}⟩ .

4.1.2 The Computation of H1(X̃) from π1(X)

Let K ⊂ Sn+2 be a knot with complement X and the universal abelian cover p ∶ X̃ →X.

Recall that p∗ ∶ π1(X̃) → π1(X) is an isomorphism onto the commutator subgroup

C = [G,G] where G = π1(X). Thus there is an induced group isomorphism:

p̄∗ ∶H1(X̃) → C/[C,C] .

This section describes how to define a Λ-module structure on C/[C,C] in a purely alge-

braic manner which is compatible with the Λ-module structure on H1(X̃) and makes the

above a Λ-isomorphism. This leads to a method for computing a Λ-module presentation

for H1(X̃), given a presentation for the knot group.

Definition 4.4. Suppose c ∈ C. Let x ∈ G be such an element that pG(x) = ±1 where pG

denotes the abelianization pG ∶ G→ G/C ≅ Z. Define a group automorphism of C/[C,C]
via

t[c] = [xcx−1]

where [ ] denotes the coset in C/[C,C].

Lemma 4.5. t ∶ C/[C,C] → C/[C,C] is well defined.

Proof. If c, d ∈ C are congruent mod [C,C] and x, y ∈ G which are sent to genera-

tors of G/C are congruent mod [G,G]. Then pG(xcx−1) = pG(x)pG(c)pG(x−1) = 0

and similarly pG(ydy−1) = 0. Thus xcx−1 and ydy−1 are elements of C. Furthermore

(xcx−1)(ydy−1)−1 ∈ [C,C]. To see this, we shall set xy−1 = c̃ ∈ C and cd−1 = c̄ ∈ [C,C].
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Then consider the image of (xcx−1)(ydy−1)−1 under the natural projection pC ∶ C →
C/[C,C]

pC((xcx−1)(ydy−1)−1) = pC((xcx−1)c̃−1xc−1c̄x−1c̃)

= pC(xcx−1) + pC(c̃−1) + pC(xc−1x−1) + pC(c̃)

= pC((xcx−1)c̃(xcx−1)−1c̃−1)

= 0 ∈ C/[C,C] .

Proposition 4.6. The following diagram commutes

H1(X̃) C/[C,C]

H1(X̃) C/[C,C]

p̄∗

τ∗ t

p̄∗

if a proper choice of generator of G/C is made in the definition of t.

Proof. Without loss of generality we choose the generator τ ∶ X̃ → X̃ of Aut X̃ to be τ+.

Thus we have the following commutative diagram

π1(X̃, yi) C = [π1(X,p(yi)), π1(X,p(yi))]

π1(X̃, yi+1) C = [π1(X,p(yi+1)), π1(X,p(yi+1))]

p∗

u v

p∗

where u(α) ∶= γ−1αγ and v(β) ∶= (p∗(γ))−1β(p∗(γ)) for α ∈ π1(X̃, yi) and β ∈ C with

basepoint p(yi) = p(yi+1). γ is an equivalence class of paths in X̃ from yi+1 to yi with

yi+1 ∈ Yi+1, yi ∈ Yi and τ(yi) = yi+1.

Abelianize the above diagram and choose x = p(γ) which is sent to a generator under

the abelianization pG. Thus τ∗ is the induced map from u and t is the induced map

from v.

It follows that the natural Λ-module structure on C/[C,C] coming from the automor-

phism t makes p̄∗ a Λ-isomorphism.

Now we are to introduce a method for computing a Λ-module presentation for H1(X̃)
from a group presentation of π1(X).

Proposition 4.7. If a knot group G = π1(X) is finitely presentable, then it has a

presentation of the form:

G ≅ ⟨x, a1, ..., ap ∣ r1, ...rq⟩
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where pG(x) = 1 and pG(ai) = 0.

Proof. Assume G ≅ ⟨y1, ...., yp ∣ r1, ..., rq⟩. Then ∃k1, ...kp ∈ Z, such that pG(yi) = ki.
Choose x ∈ G, such that pG(x) = 1 and define ai = xkiy−1

i . Thus pG(ai) = 0. Then

G ≅ ⟨x, a1, ...ap ∣ r′1, ..., r′q⟩ with the relations reformulated as linear combinations of

x, a1, ...ap.

Proposition 4.8. Using the above notation, the commutator subgroup C of G is gen-

erated by all words of the form:

xka±1
i x

−k .

Proof. Any element c ∈ C can be written as

c = w1x
k1w2x

k2 ...wrx
krwr+1 .

where wi is a word made up from {a1, ...ap}, i.e.

wi = am1
i1
am2
i2
...a

kpi
ipi
, i ∈ {1,2, ..., r + 1}

.

Note that for any n ∈ Z,

wi[n] ∶= xnwix−n

=
pi

∏
k=1

(xnaikx−n)
mk

(4.1)

is of the desired form in the proposition.

Thus c can be rewritten as:

c = w1
⎛
⎝
r

∏
i=1

wi+1[
i

∑
j=1

kj]
⎞
⎠
x∑

r
j=1 kj

Note that pG(c) = 0 and pG(wi) = 0. So ∑rj=1 kj = 0. Therefore

c = w1
⎛
⎝
r

∏
i=1

wi+1[
i

∑
j=1

kj]
⎞
⎠

is generated by all words of the form xka±1
i x

−k.

Furthermore, each ri is equivalent to a word r
′

i which is a product of words of that form,

since pG(ri) = 0, i.e. ri ∈ C.
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Therefore we may obtain a Λ-module presentation of C/[C,C] by taking generators

α1, ...αp, which are the images of a1, ..., ap under abelianization pG. Formally rewriting

r
′

i additively, substituting

±tkαi for xka±1
i x

−k .

4.1.3 Example: The Alexander invariant of the torus knots

Before introducing the definition of the Alexander polynomial, we first give a concrete

example of computation of H1(X̃) with the method introduced above and thus in the

next chapter we can obtain the Alexander polynomial from the presentation of H1(X̃)
as a Λ-module.

Proposition 4.9. For a torus knot Tp,q with p, q coprime positive integers, its Alexander

invariant is Λ/(∆p,q(t)) with ∆p,q(t) = (1−t)(1−t
pq)

(1−tp)(1−tq) .

Remark 4.10. In chapter 4.3 we will see that ∆p,q(t) is the Alexander polynomial of

Tp,q.

Proof. Recall from Chapter 2.2 that the knot group of a torus knot Tp,q with p, q coprime

positive integers has a presentation

Gp,q ≅ ⟨u, v∣ up = vq⟩ .

Lemma 4.11. Under the abelianization pG(u) = q, pG(v) = p.

Proof. Assume pG(u) = k, pG(v) =m. From the relation up = vq we obtain kp =mq and

thus we can write k = tq, m = tp, for some t ∈ Z. Since u, v generates Gp,q, there exists

r, s ∈ Z such that rk+sm = 1. Substituting k with tq, m with tp, we obtain t(rq+sp) = 1

and therefore t = ±1. If t = −1, take Gp,q ≅ ⟨−u,−v ∣ (−u)p = (−v)q⟩. Therefore without

loss of generality we can assume that pG(u) = q, pG(v) = p.

Since p, q are coprime, we can choose integers r, s satisfying pr+ qs = 1, r > 0, s < 0. Let

x = usvr, a = ux−q, b = vx−p .

In this way we obtain a presentation of Gp,q

Gp,q ≅ ⟨x, a, b ∣ (axq)p = (bxp)q, x = (axq)s(bxp)r⟩

with pG(x) = 1, pG(a) = 0, pG(b) = 0.
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Rewrite the relation (axq)p = (bxp)q as

p−1

∏
i=0

xiqax−iq = (
q−1

∏
j=0

xjqbx−jq) .

Now we substitute xkax−k with tkα and xkbx−k with tkβ. Thus we obtain

(1 + tq + t2q + ... + t(p−1)q)α = (1 + tp + t2p + ... + t(q−1)p)β . (4.2)

Similarly the relation x = (axq)s(bxp)r can be substituted with

(1 + tq + t2q + ... + t(−s−1)q)α = (1 + tp + t2p + ... + t(r−1)p)β . (4.3)

The equation (4.1) can be rewritten as

1 − tpq
1 − tq α = 1 − tpq

1 − tp β

and the equation (4.2) can be rewritten as

1 − t−sq
1 − tq α = 1 − trp

1 − tp β .

Thus we have a Λ-module presentation of the Alexander invariant of the torus knot Tp,q

H1(X̃p,q) = ⟨α,β ∣ 1 − tpq
1 − tq α = 1 − tpq

1 − tp β,
1 − t−sq
1 − tq α = 1 − trp

1 − tp β ⟩ .

Define Λ-module homomorphisms φ ∶ H1(X̃p,q) → Γ = < γ ∣ ∆(t)γ = (1−t)(1−t
pq)

(1−tp)(1−tq)γ = 0 >
via

φ(α) = 1 − trp
1 − tp γ

φ(β) = 1 − t−sq
1 − tq γ.

and ψ ∶ Γ→H1(X̃p,q) via

ψ(γ) = tsq (1 − tp
1 − t α −

1 − tq
1 − t β) .

First we check that φ and ψ are well-defined,i.e.

1 − tpq
1 − tq φ(α) −

1 − tpq
1 − tp φ(β) =

∆(t)
tsq

γ = 0
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1 − t−sq
1 − tq φ(α) −

1 − trp
1 − tp φ(β) = 0 ⋅ γ = 0

∆(t)ψ(γ) = tsq (1 − tpq
1 − tq α −

1 − tpq
1 − tp β) = 0 .

Second we check that φ and ψ are inverse to each other where we only need to check

this on the generators

φ ○ ψ(γ) = φ(tsq (1 − tp
1 − t α −

1 − tq
1 − t β))

= tsq 1 − tp
1 − t φ(α) − t

sq 1 − tq
1 − t φ(β)

= tsq (1 − tp
1 − t

1 − trp
1 − tp − 1 − tq

1 − t
1 − t−sq
1 − tq )γ

= tsq t
−sq(1 − tqs+pr)

1 − t γ

= γ

(4.4)

ψ ○ φ(α) = ψ (1 − trp
1 − tp γ)

= 1 − trp
1 − tp (tsq (1 − tp

1 − t α −
1 − tq
1 − t β))

= tsq (1 − trp
1 − t α −

1 − tq
1 − t

1 − trp
1 − tp β)

(4.2)= tsq (1 − trp
1 − t α −

1 − tq
1 − t

1 − t−sq
1 − tq α)

= tsq t
−sq(1 − tqs+pr)

1 − t α

= α

(4.5)

since qs + pr = 1.

Similarly we have ψ ○ φ(β) = β.

Thus ψ ○ φ = idH1(X̃p,q) and φ ○ ψ = idΓ. So we obtain H1(X̃p,q) ≅ Γ. Furthermore

Γ ≅ Λ/∆p,q(t). Therefore we concluded that the Alexander invariant of a torus knot Tp,q

is Λ/∆p,q(t).

4.2 Presentation of modules

In this section we introduce the matrix presentation of a module and later apply this to

the computation of the Alexander polynomial.
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Let A be a commutative ring with unit and consider a finitely presented module M over

A:

M ≅ ⟨α1, ...αr ∣ ρ1, ..., ρs⟩

where each relation ρi, i = 1,2, ..., s is a linear combination of the generators:

ρi = Σr
j=1aijαj , aij ∈ A, i = 1,2, ..., p .

Define P = (aij)s×r as the presentation matrix for M corresponding to the given module

presentation. That is, the rows of P are the coefficients of the relators relative to the

generators. Knowing P is the same as knowing the specific presentation to which it

corresponds. Therefore P determines M up to A-isomorphism.

Definition 4.12. Let M be a module over A which has an s× r presentation matrix P .

The ideal of A generated by all r × r minors is called the order ideal of M . If s < r, it is

defined to be the zero ideal.

Proposition 4.13. The order ideal of an A-module M does not depend on the choice

of presentation P .

For a proof of the Proposition 4.13, see [Zas58, Chapter III ].

Remark 4.14. In the case where M has a square presentation matrix P , the order ideal

is principal and is generated by detP .

4.3 The Alexander polynomial

Recall that the Alexander invariant H∗(X̃) is the homology groups of the universal

abelian cover of the knot complement, considered as a module over Λ, the ring of integral

Laurent polynomials. In the case of classical tame knots it is finitely presentable (we

can compute the so-called Wirtinger presentation from a regular projection of the knot

[Rol76, Chapter 3.D]), and it follows from the Mayer-Vietoris sequence in Proposition

4.3 that Hi(X̃) vanish for i ≥ 2.

Definition 4.15. Any presentation matrix for the Alexander invariant H1(X̃) of a knot

K is called an Alexander matrix for K. The associated order ideal in Λ is called the

Alexander ideal of K, and if this is principal, any generator of the Alexander ideal is

called the Alexander polynomial.

Proposition 4.16. The Alexander polynomial of a torus knot Tp,q is ∆p,q(t) = (1−t)(1−t
pq)

(1−tp)(1−tq) .
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Proof. Recall from Proposition 4.9 a presentation of the Alexander invariant H1(X̃p,q)
of the torus knot Tp,q

H1(X̃p,q) ≅ Λ/(∆p,q(t)) ≅ ⟨γ ∣ ∆p,q(t)γ = 0 ⟩

with ∆p,q(t) = (1−t)(1−t
pq)

(1−tp)(1−tq) .

It follows that the presentation matrix of H1(X̃p,q) is a 1 × 1 matrix with ∆p,q(t) as its

entry. Therefore the Alexander polynomial of the torus knot Tp,q is

∆p,q(t) =
(1 − t)(1 − tpq)
(1 − tp)(1 − tq) .

Now we can give a proof of the Schreier’s theorem 2.12 using the Alexander polynomial

of the torus knot.

Proposition 4.17. Let p > 1 and q > 1. Then the polynomials ∆p1,q1(t) and ∆p2,q2(t)
for Tp1,q1 and Tp2,q2 with pi, qi ∈ N+, i = {1,2} are distinct unless {p1, q1} = {p2, q2}.

Proof. The roots of ∆p,q(t) are all the pq-th roots of unity except for the p-th roots of

unity and q-th roots of unity. The proposition follows by comparing the sets of roots of

∆p1,q1(t) and ∆p2,q2(t).

From now on we restrict our attention to classical knots in S3. Note especially that

a tame knot in S3 has a presentation of H1(X̃) with as many generators as relations

(e.g. Wirtinger presentation, see [Rol76, Chapter 3.D]). That is, for a given tame knot

K ⊂ S3, there is a square matrix presentation of H1X̃ as a Λ− module, and its Alexander

polynomial is the determinant of the corresponding matrix.

4.3.1 Seifert form and Seifert matrices

One of the many ways to compute the Alexander polynomial is by using Seifert matrices,

where we need first the notion of the linking number of two knots.

Definition 4.18. Given J and K two disjoint oriented knots in S3 (or R3), let M be

a Seifert surface for K, with bicollar (N, N+, N−) of M̊ as in Chapter 3. Assume

(allowing adjustment of J by a homotopy in S3 −K) that J meets M at a finite number

of points, and at each such point J passes locally

(a) from N+ to N−
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(b) from N− to N+

following its orientation. Weight the intersections of type (a) with +1 and those of type

(b) with −1. The sum of these numbers is the linking number of J and K, denoted by

lk (J,K).

Remark 4.19. Although it is not obvious from the definition, the linking number does

not depend of the choice of Seifert surface, see [Rol76, Chapter 5.D].

Given a knot K in S3, choose a Seifert surface M in S3 for K and also choose a particular

bicollar M̊ × [−1,1] in S3 −K. If x ∈ H1(M̊) is represented by a closed curve (which

we’ll also call x) in M̊ , let x+ denote the closed curve carried by x × {1} in the bicollar.

Similarly let x− denote the closed curve carried by x×{−1}. Since disjoint closed curves

in S3 have a well-defined linking number we can make the following definition.

Definition 4.20. The function f ∶ H1(M̊) ×H1(M̊) → Z defined by (x, y) ↦ lk(x, y+)
is called a Seifert form for K. It clearly depends upon the choice of M and choice of a

bicollar. We choose further a basis e1, ...e2g (M is of genus g) for H1(M̊) as a Z−module

and define the associated Seifert matrix V = (vij) to be the 2g by 2g integral matrix

with entries

vij = lk (ei, e+j ) .

For a tame knot K in S3 we have the following important theorem:

Theorem 4.21. If V is a Seifert matrix for a tame knot K in S3, then V T − tV is an

Alexander matrix for K. So is V − tV T .

For the proof of the theorem, we need first the following lemma:

Lemma 4.22. Let M be a Seifert surface for a knot in S3 and let a1, ...a2g be a basis

for H1(M̊). Then there is a basis α1, ..., α2g for H1(S3 −M) which is dual to {ai} with

respect to the linking pairing. That is, lk (ai, αj) = δij, i, j ∈ {1,2, ...,2g}.

Proof. See [Rol76, Chapter 8.C.14].

Now we are to prove the theorem:

Proof. Let M be a bicollared Seifert surface for K and let V be the Seifert matrix

corresponding to some basis a1, ..., a2g for H1(M̊). Its entries are vij = lk (ai, a+j ). By

the lemma, let α1, α2, ..., α2g be the basis for H1(S3 −M) which is dual to {ai} with

respect to the linking pairing, i.e. lk (ai, αj) = δij . Note that the coefficients of any
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element α = Σcjαj may be recovered by cj = lk (α,aj). As in the section 4.1, we see that

the homology H1(X̃) can be presented as a Λ-module with generators α1, ..., α2g and

relations

a−i = ta+i , i = 1, ...,2g .

Writing out the relations in terms of the αj they becomes

∑
j

lk (a−i , aj)αj = t
⎛
⎝∑j

lk (a+i , aj)αj
⎞
⎠
.

From the definition we have that lk (a−i , aj) = lk (ai, a+j ) = vij , the relations may be

rewriten as

∑(vij − tvij)αj = 0, i = 1, ...,2g .

The relation matrix corresponding to this is precisely V − tV T . Note that if one in-

terchanges the + and − sides of the bicollar of M , the new Seifert matrix is just the

transpose of the old one. From this we can conclude that V T − tV is also a presentation

matrix for H1(X̃).

Corollary 4.23. The Alexander invariant of a tame knot in S3 has a square presenta-

tion matrix V T − tV , so its Alexander ideal is principal and it has Alexander polynomial

∆(t) ∶= det (V T − tV ).

Corollary 4.24. Define the degree of a Laurent polynomial to be the difference between

the highest and lowest exponents at which nonzero coefficients occur. Then there is the

following inequality connecting the genus of a knot in S3 and the degree of its Alexander

polynomial:

deg (∆(t)) ≤ 2g(K)

Proof. Assume we use a minimal Seifert surface of genus g = g(K) to compute the

Serfiert matrix. Then the highest degree of t in the Alexander polynomial is 2g. Thus

deg (∆(t)) ≤ 2g(K)).

Corollary 4.25. The genus of the torus knot Tp,q is 1
2(p − 1)(q − 1).

Proof. Recall from chapter 3.1 that we concluded that g(Tp,q) ≤ (p−1)(q−1)
2 . In chapter

4.1.3 we computed that the Alexander polynomial of Tp,q is a polynomial of degree

(p − 1)(q − 1). Thus from the corollary above g(Tp,q) ≥ (p−1)(q−1)
2 . Therefore g(Tp,q) =

(p−1)(q−1)
2 .
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4.3.2 Example: The Alexander invariant of the twist knots

Given a handle decomposition of a compact connected oriented genus one surface M

with boundary, recall that the twist knot Km,n, m,n ∈ Z is defined as the boundary of

M after fully twisting left and right 1-handles m and n times respectively.

We can choose M to be a Seifert surface of Km,n, g(M) = 1.

Figure 4.1: Km,n and M considered as its Seifert surface

We shall fix an orientation of the knot as shown in Figure 4.1 to determine the + and −
sides of the bicollar of the surface M . Choose the generators a and b of M and fix their

orientation as indicated in Figure 4.1, then

V (Km,n) =
⎡⎢⎢⎢⎢⎣

lk (a, a+) lk (a, b+)
lk (b, a+) lk (b, b+)

⎤⎥⎥⎥⎥⎦

First we observe that lk (a, b+) and lk (b, a+) do not depend on the pair (m,n) ∈ Z,

since they can only be linked with each other at the place where the two 1-handles

over/under-cross each other. In particular, lk (a, b+) = 0 and lk (b, a+) = −1.

(a) a lies under the Seifert surface of b+ (b) b passing from the - side to + side of the
Seifert surface of a+

As for lk (a, a+), the linking takes place at the m full twists of the left 1-handle. If

m > 0, a passes from the + side to the - side of the Seifert surface of a+ m times; if

m < 0, a passes from the - side to the + side of the Seifert surface of a+ −m times. Thus
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lk (a, a+) = m. Similarly for lk (b, b+) which depends on the n ful twists of the right

1-hanlde, we obtain lk(b, b+) = n. Therefore we obtain the Seifert matrix of the knot

Km,n as follows

V (Km,n) =
⎡⎢⎢⎢⎢⎣

m 0

−1 n

⎤⎥⎥⎥⎥⎦
.

From the Seifert matrix we can calculate the Alexander polynomial ∆m,n(t) of Km,n

∆m,n(t) =mnt2 + (1 − 2mn)t +mn .

Proposition 4.26. If mn ≠ 0, the genus of the knot Km,n is 1.

Proof. Since M is a Seifert surface of Km,n, g(K) ≤ g(M) = 1. The Alexander polyno-

mial of Km,n has degree 2 if mn ≠ 0. Thus by Corollary 4.24 g(K) ≥ 1. Therefore we

obtain g(K) = 1.

Example 4.1. In the case where n = 0, we obtain a Seifert surface M0 with m+4 Seifert

circles and m+5 crossings by applying the Seifert algorithm. Using Proposition 3.11 we

have g(M0) = 0. Therefore Km,0 is the unknot. Similarly when m = 0 we get K0,n is the

unknot.

Figure 4.3: K2,0 and the Seifert circles obtained by the Seifert algorithm

Proposition 4.27. The Alexander polynomial of the unknot is ∆u(t) = t.

Proof. Let m = 0, then the Alexander polynomial of K0,n is ∆0,n(t) = t and K0,n is the

unknot.

Example 4.2. K1,1 is a right-handed trefoil knot and K−1,−1 is a left-handed trefoil

knot.

We show by pictures how K1,1 can be transformed to a right-handed trefoil using iso-

topies and similarly it works for K−1,−1
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Figure 4.4: K1,1 is a right-handed trefoil knot

Proposition 4.28. A twist knot Km,n with mn ≠ 0 can be embedded in a standard torus,

i.e, it is also a torus knot if and only if mn = 1.

Proof. From the above example we know that K1,1 and K−1,−1 are trefoil knot, i.e. T2,3.

As for the other direction, recall from Corollary 4.25 and Proposition 4.26 that g(Tp,q) =
(p−1)(q−1)

2 and g(Km,n) = 1. Furthermore
(p−1)(q−1)

2 = 1 exactly when {p, q} = {2,3}, i.e.

Km,n is equivalent with the trefoil knot. Therefore ∆m,n(t) = (1−t)(1−t6)
(1−t2)(1−t3) = t

2 − t+ 1 and

by comparing coefficients we obtain mn = 1.
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